torch.backends.cudnn.benchmark = False
时间: 2024-05-22 18:15:35 浏览: 149
This line of code sets the CuDNN benchmark flag to False in PyTorch. CuDNN (CUDA Deep Neural Network library) is a GPU-accelerated library for deep learning. When benchmark is set to True, CuDNN will search for the optimal set of algorithms to use for a given input size and configuration, which can result in faster computation. However, this search can be time-consuming and may not always result in the best performance. Therefore, setting benchmark to False will disable this search and use a default set of algorithms, which may be slower but more consistent.
相关问题
torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True
这两行代码是用于设置PyTorch在使用CUDA加速时的一些参数。
`torch.backends.cudnn.benchmark`默认为False,表示每次运行时都会去寻找最优的卷积算法来提升性能,但这样会导致每次结果略有不同。
`torch.backends.cudnn.deterministic`默认为False,表示结果会尽可能保持确定性,但这样会导致一些性能上的损失。
当需要确保每次运行的结果一致时,我们可以将`torch.backends.cudnn.benchmark`设置为False,同时将`torch.backends.cudnn.deterministic`设置为True。
torch.manual_seed(4321) # reproducible torch.cuda.manual_seed_all(4321) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True # Can change it to False --> default: False torch.backends.cudnn.enabled = True
这是一些用于设置PyTorch运行时的随机数种子和CUDA加速库的设置。torch.manual_seed(4321)设置CPU随机数种子,torch.cuda.manual_seed_all(4321)设置GPU随机数种子,保证每次运行程序生成的随机数一致,方便调试和结果复现。torch.backends.cudnn.benchmark = False是为了禁用cudnn的自动调参功能,以保证结果的稳定性和可重复性。torch.backends.cudnn.deterministic = True是为了让cudnn使用确定性算法,从而确保每次运行结果相同。torch.backends.cudnn.enabled = True是为了启用CUDA加速库的使用。
阅读全文