我有一个来自十个类别各100个共1000个的信号数据,每个数据有512个特征点,存储为一个(1000,1,512)的torch.tensor张量,现在我想将其输入一个深度DenseNet网络训练分类模型用于分类这些类别,请使用pytorch实现
时间: 2024-05-02 17:21:29 浏览: 89
以下是实现代码:
```python
import torch
import torch.nn as nn
from torchvision.models import densenet121
# 定义DenseNet模型
class DenseNet(nn.Module):
def __init__(self, num_classes):
super(DenseNet, self).__init__()
self.features = densenet121(pretrained=False).features
self.classifier = nn.Linear(1024, num_classes)
def forward(self, x):
features = self.features(x)
out = nn.functional.relu(features, inplace=True)
out = nn.functional.adaptive_avg_pool2d(out, (1, 1)).view(features.size(0), -1)
out = self.classifier(out)
return out
# 数据准备
data = torch.randn(1000, 1, 512)
labels = torch.randint(0, 10, (1000,))
# 模型定义及训练
model = DenseNet(num_classes=10)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
for epoch in range(10):
running_loss = 0.0
for i in range(0, len(data), 64):
inputs = data[i:i+64]
targets = labels[i:i+64]
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1}, Loss: {running_loss/len(data):.4f}")
```
这里使用了预训练的DenseNet121作为特征提取器,然后添加一个全连接层进行分类。在训练过程中,使用交叉熵损失函数和Adam优化器进行模型优化。
阅读全文