实现ResNet网络模型,并在Mnist数据集上进行训练和验证的Python代码
时间: 2024-03-06 12:51:59 浏览: 106
好的,以下是实现ResNet网络模型,并在Mnist数据集上进行训练和验证的Python代码:
```python
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# 定义ResNet网络模型
def resnet_block(inputs, num_filters, kernel_size, strides, activation='relu', batch_normalization=True, conv_first=True):
conv = layers.Conv2D(num_filters, kernel_size=kernel_size, strides=strides, padding='same',
kernel_initializer='he_normal', kernel_regularizer=keras.regularizers.l2(1e-4))
x = inputs
if conv_first:
x = conv(x)
if batch_normalization:
x = layers.BatchNormalization()(x)
if activation is not None:
x = layers.Activation(activation)(x)
else:
if batch_normalization:
x = layers.BatchNormalization()(x)
if activation is not None:
x = layers.Activation(activation)(x)
x = conv(x)
return x
def resnet_v1(input_shape, depth):
if (depth - 2) % 6 != 0:
raise ValueError('depth should be 6n+2 (eg 20, 32, 44 in [a])')
num_filters = 16
num_res_blocks = int((depth - 2) / 6)
inputs = keras.Input(shape=input_shape)
x = resnet_block(inputs, num_filters, kernel_size=3, strides=1)
for stack in range(3):
for res_block in range(num_res_blocks):
strides = 1
if stack > 0 and res_block == 0:
strides = 2
y = resnet_block(x, num_filters, kernel_size=3, strides=strides)
y = resnet_block(y, num_filters, kernel_size=3, strides=1, activation=None)
if stack > 0 and res_block == 0:
x = resnet_block(x, num_filters, kernel_size=1, strides=2, activation=None, batch_normalization=False)
x = layers.add([x, y])
x = layers.Activation('relu')(x)
num_filters *= 2
x = layers.AveragePooling2D(pool_size=8)(x)
y = layers.Flatten()(x)
outputs = layers.Dense(10, activation='softmax', kernel_initializer='he_normal')(y)
model = keras.Model(inputs=inputs, outputs=outputs)
return model
# 加载Mnist数据集
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.astype('float32') / 255.
x_test = x_test.astype('float32') / 255.
x_train = tf.expand_dims(x_train, -1)
x_test = tf.expand_dims(x_test, -1)
# 编译模型并进行训练
model = resnet_v1(input_shape=(28, 28, 1), depth=20)
model.compile(loss='sparse_categorical_crossentropy',
optimizer=keras.optimizers.Adam(),
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=64,
epochs=50,
validation_data=(x_test, y_test),
shuffle=True)
# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print('Test accuracy:', test_acc)
```
希望能够对您有所帮助!
阅读全文