Unused import statement 'from keras.utils.np_utils import to_categorical'

时间: 2024-04-30 14:24:49 浏览: 121
这个警告信息意味着你在代码中导入了 `to_categorical` 函数,但没有在代码中使用它。你可以通过删除该导入语句来消除警告,或者在代码中使用该函数来解决未使用的导入问题。如果你确实需要使用该函数,可以将其用于将标签转换为分类形式。例如: ```python from keras.utils.np_utils import to_categorical # 假设你有一个标签列表: labels = [0, 1, 2, 1, 0] # 将标签转换为分类形式 labels_categorical = to_categorical(labels) # 输出结果: # [[1. 0. 0.] # [0. 1. 0.] # [0. 0. 1.] # [0. 1. 0.] # [1. 0. 0.]] ``` 这里,标签列表中的每个标签都被转换为一个长度为标签数目的向量,其中该标签所对应的索引位置为 1,其余位置为 0。这种形式的标签通常用于分类任务中。
相关问题

pycharm将import scipy.fftpack as fp from skimage.io import imread from skimage.color import rgb2gray, gray2rgb import matplotlib.pyplot as plt from skimage.draw import rectangle_perimeter import numpy as np import cv2 import numpy as np import matplotlib.pylab as plt from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import from mpl_toolkits.axes_grid1 import make_axes_locatable from skimage.metrics import peak_signal_noise_ratio, structural_similarity from sklearn.metrics import mean_squared_error, mean_absolute_error from matplotlib.ticker import LinearLocator, FormatStrFormatter from scipy.fftpack import dct, idct import cv2 as cv def dct2(a): return dct(dct(a, axis=0, norm='ortho'), axis=1, norm='ortho') def idct2(a): return idct(idct(a, axis=0, norm='ortho'), axis=1, norm='ortho') im = rgb2gray(imread('2.jpg')) imF = dct2(im) im1 = idct2(imF) print(np.allclose(im, im1))优化一下,能控制压缩率

好的,你可以考虑使用基于DCT的图像压缩算法,通过调整量化表来控制压缩比率和图像质量之间的平衡。具体来说,你可以将DCT系数进行量化,然后设置一个量化参数Q,通过调整Q的大小来控制压缩比率和图像质量之间的平衡。一般来说,Q的值越大,压缩比率就越小,图像质量就越好,反之亦然。 下面是一个简单的基于DCT的图像压缩代码示例,你可以根据需要进行修改和优化: ```python import numpy as np import cv2 from scipy.fftpack import dct, idct def dct2(a): return dct(dct(a, axis=0, norm='ortho'), axis=1, norm='ortho') def idct2(a): return idct(idct(a, axis=0, norm='ortho'), axis=1, norm='ortho') def compress_image(im, Q): # 对图像进行DCT变换 imF = dct2(im) # 设置量化矩阵 QM = np.array([[16, 11, 10, 16, 24, 40, 51, 61], [12, 12, 14, 19, 26, 58, 60, 55], [14, 13, 16, 24, 40, 57, 69, 56], [14, 17, 22, 29, 51, 87, 80, 62], [18, 22, 37, 56, 68, 109, 103, 77], [24, 35, 55, 64, 81, 104, 113, 92], [49, 64, 78, 87, 103, 121, 120, 101], [72, 92, 95, 98, 112, 100, 103, 99]]) # 进行量化 imQ = np.round(imF / (QM * Q)) # 对图像进行IDCT变换 im1 = idct2(imQ) # 限制像素值在0到255之间 im1 = np.clip(im1, 0, 255) im1 = im1.astype(np.uint8) return im1 # 读取图像 im = cv2.imread('lena.png', cv2.IMREAD_GRAYSCALE) # 设置量化参数Q Q = 50 # 进行图像压缩 im1 = compress_image(im, Q) # 计算压缩比率 cr = im.size / (im1.size * np.ceil(np.log2(Q))) # 计算PSNR和SSIM psnr = peak_signal_noise_ratio(im, im1) ssim = structural_similarity(im, im1, multichannel=False) # 输出结果 print('压缩比率: {:.2f}'.format(cr)) print('PSNR: {:.2f}'.format(psnr)) print('SSIM: {:.2f}'.format(ssim)) ``` 在上面的代码中,你可以调整量化参数Q的大小来控制压缩比率和图像质量之间的平衡。同时,通过计算PSNR和SSIM等指标,可以对压缩后的图像质量进行评估。

我用Cython封装了一个来自segment-anything-master项目里的.pth模型,我的.pyx文件是这么写的import sys import numpy as np import matplotlib import matplotlib.pyplot as plt import cv2 from typing import Any, Dict, List, Optional, Tuple sys.path.append("/app/PythonProjects/segment-anything-main") from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor # model.pyxcdef class SamModel: def __init__(self, str model_type,str sam_checkpoint, str device = "cpu", points_per_side: Optional[int] = 32, points_per_batch: int = 64, point_grids: Optional[List[np.ndarray]] = None): self.sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) self.sam.to(device) self.mask_generator = SamAutomaticMaskGenerator(self.sam,points_per_side = points_per_side, points_per_batch = points_per_batch, point_grids = point_grids) def __getmodel__(self): return self.sam def __callmodel__( self, input: np.array ): masks = self.mask_generator.generate(input) return masks,我的setup.py文件是这样写的:from distutils.core import setup from distutils.extension import Extension import Cython from Cython.Build import cythonize import numpy extensions = [ Extension('models.model', ['/app/PythonProjects/segment-anything-main/SamCython/models/model.pyx'], include_dirs=[numpy.get_include()]), ] setup( name='models', ext_modules=cythonize(extensions), ),给我一篇C++调动这个模型的实例

好的,以下是一个简单的C++调用这个模型的示例代码: ```cpp #include <Python.h> #include <numpy/arrayobject.h> #include <iostream> int main() { // 初始化 Python 解释器 Py_Initialize(); // 加载 NumPy 模块 import_array(); // 加载 Python 模块和函数 PyObject* pModule = PyImport_ImportModule("models.model"); if (!pModule) { std::cerr << "Failed to import module" << std::endl; return 1; } PyObject* pFunc = PyObject_GetAttrString(pModule, "__callmodel__"); if (!pFunc || !PyCallable_Check(pFunc)) { std::cerr << "Failed to get function" << std::endl; return 1; } // 准备输入数据 int width = 640; int height = 480; npy_intp dims[3] = { height, width, 3 }; unsigned char* inputData = new unsigned char[width * height * 3]; // 填充 inputData 数据 // 创建 NumPy 数组 PyObject* pInputArray = PyArray_SimpleNewFromData( 3, dims, NPY_UINT8, inputData); // 调用函数 PyObject* pOutputArray = PyObject_CallFunction(pFunc, "O", pInputArray); if (!pOutputArray) { std::cerr << "Failed to call function" << std::endl; return 1; } // 获取输出数据 unsigned char* outputData = PyArray_DATA((PyArrayObject*)pOutputArray); // 处理 outputData 数据 // 释放资源 Py_DECREF(pInputArray); Py_DECREF(pOutputArray); Py_DECREF(pFunc); Py_DECREF(pModule); Py_Finalize(); delete[] inputData; return 0; } ``` 需要注意的是,在编译时,需要链接 Python 和 NumPy 库。可以使用以下命令进行编译: ``` g++ -o main main.cpp -I/usr/include/python3.8 -lpython3.8 -lpython3 -lm -ldl -I/usr/local/lib/python3.8/dist-packages/numpy/core/include -L/usr/local/lib/python3.8/config-3.8-x86_64-linux-gnu -lpython3.8 -lcrypt -lpthread -ldl -lutil -lm -Wno-unused-result ``` 其中,`-I` 参数指定 Python 和 NumPy 的头文件路径,`-l` 参数指定 Python 的库文件和 NumPy 的库文件(需要根据自己的 Python 版本和安装路径进行调整)。
阅读全文

相关推荐

pt_x_bc_var = Variable(torch.from_numpy(x_bc_var).float(), requires_grad=False) pt_x_in_pos_one = Variable(torch.from_numpy(x_in_pos_one).float(), requires_grad=False) pt_x_in_zeros = Variable(torch.from_numpy(x_in_zeros).float(), requires_grad=False) pt_t_in_var = Variable(torch.from_numpy(t_in_var).float(), requires_grad=False) pt_u_in_zeros = Variable(torch.from_numpy(u_in_zeros).float(), requires_grad=False) # 求边界条件的损失 net_bc_right = net(torch.cat([pt_x_in_zeros, pt_t_in_var], 1)) # u(0,t)的输出 mse_u_2 = mse_cost_function(net_bc_right, pt_u_in_zeros) # e = 0-u(0,t) 公式(2) net_bc_left = net(torch.cat([pt_x_in_pos_one, pt_t_in_var], 1)) # u(1,t)的输出 mse_u_3 = mse_cost_function(net_bc_left, pt_u_in_zeros) x_0 = torch.cat([pt_x_in_zeros, pt_t_in_var], 1) x_1 = torch.cat([pt_x_in_pos_one, pt_t_in_var], 1) pt_x_0 = x_0.detach().requires_grad_(True) pt_x_1 = x_1.detach().requires_grad_(True) net_bc_right.requires_grad_(True) net_bc_left.requires_grad_(True) u_x_0 = torch.autograd.grad(net_bc_right, pt_x_0, grad_outputs=torch.ones_like(net_bc_right), create_graph=True, allow_unused=True)[0][:, 0].unsqueeze(-1) u_x_1 = torch.autograd.grad(net_bc_left, pt_x_1, grad_outputs=torch.ones_like(net_bc_left), create_graph=True, allow_unused=True)[0][:, 0].unsqueeze(-1) u_xx_0 = torch.autograd.grad(u_x_0, pt_x_0, grad_outputs=torch.ones_like(u_x_0), create_graph=True, allow_unused=True)[0][:, 0].unsqueeze(-1) u_xx_1 = torch.autograd.grad(u_x_1, pt_x_1, grad_outputs=torch.ones_like(u_x_1), create_graph=True, allow_unused=True)[0][:, 0].unsqueeze(-1)这串代码有什么问题吗?该怎么解决

优化代码 def cluster_format(self, start_time, end_time, save_on=True, data_clean=False, data_name=None): """ local format function is to format data from beihang. :param start_time: :param end_time: :return: """ # 户用簇级数据清洗 if data_clean: unused_index_col = [i for i in self.df.columns if 'Unnamed' in i] self.df.drop(columns=unused_index_col, inplace=True) self.df.drop_duplicates(inplace=True, ignore_index=True) self.df.reset_index(drop=True, inplace=True) dupli_header_lines = np.where(self.df['sendtime'] == 'sendtime')[0] self.df.drop(index=dupli_header_lines, inplace=True) self.df = self.df.apply(pd.to_numeric, errors='ignore') self.df['sendtime'] = pd.to_datetime(self.df['sendtime']) self.df.sort_values(by='sendtime', inplace=True, ignore_index=True) self.df.to_csv(data_name, index=False) # 调用基本格式化处理 self.df = super().format(start_time, end_time) module_number_register = np.unique(self.df['bat_module_num']) # if registered m_num is 0 and not changed, there is no module data if not np.any(module_number_register): logger.logger.warning("No module data!") sys.exit() if 'bat_module_voltage_00' in self.df.columns: volt_ref = 'bat_module_voltage_00' elif 'bat_module_voltage_01' in self.df.columns: volt_ref = 'bat_module_voltage_01' elif 'bat_module_voltage_02' in self.df.columns: volt_ref = 'bat_module_voltage_02' else: logger.logger.warning("No module data!") sys.exit() self.df.dropna(axis=0, subset=[volt_ref], inplace=True) self.df.reset_index(drop=True, inplace=True) self.headers = list(self.df.columns) # time duration of a cluster self.length = len(self.df) if self.length == 0: logger.logger.warning("After cluster data clean, no effective data!") raise ValueError("No effective data after cluster data clean.") self.cluster_stats(save_on) for m in range(self.mod_num): print(self.clusterid, self.mod_num) self.module_list.append(np.unique(self.df[f'bat_module_sn_{str(m).zfill(2)}'].dropna())[0])

D:\Anaconda\envs\tf1\python.exe C:/Users/夏芷琳/Desktop/VAE-LSTM-for-anomaly-detection-master/codes/train.py Traceback (most recent call last): File "C:/Users/夏芷琳/Desktop/VAE-LSTM-for-anomaly-detection-master/codes/train.py", line 2, in <module> import tensorflow as tf File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\__init__.py", line 24, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\python\__init__.py", line 52, in <module> from tensorflow.core.framework.graph_pb2 import * File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\core\framework\graph_pb2.py", line 15, in <module> from tensorflow.core.framework import node_def_pb2 as tensorflow_dot_core_dot_framework_dot_node__def__pb2 File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\core\framework\node_def_pb2.py", line 15, in <module> from tensorflow.core.framework import attr_value_pb2 as tensorflow_dot_core_dot_framework_dot_attr__value__pb2 File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\core\framework\attr_value_pb2.py", line 15, in <module> from tensorflow.core.framework import tensor_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__pb2 File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\core\framework\tensor_pb2.py", line 15, in <module> from tensorflow.core.framework import resource_handle_pb2 as tensorflow_dot_core_dot_framework_dot_resource__handle__pb2 File "D:\Anaconda\envs\tf1\lib\site-packages\tensorflow\core\framework\resource_handle_pb2.py", line 41, in <module> serialized_options=None, file=DESCRIPTOR), File "D:\Anaconda\envs\tf1\lib\site-packages\google\protobuf\descriptor.py", line 561, in __new__ _message.Message._CheckCalledFromGeneratedFile() TypeError: Descriptors cannot not be created directly. If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0. If you cannot immediately regenerate your protos, some other possible workarounds are: 1. Downgrade the protobuf package to 3.20.x or lower. 2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower). More information: https://developers.google.com/protocol-buffers/docs/news/2022-05-06#python-updates

最新推荐

recommend-type

VB航空公司管理信息系统 (源代码+系统)(2024it).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

基于SpringBoot+Vue开发的排课管理系统设计源码

本项目为基于SpringBoot和Vue框架构建的排课管理系统源码,包含228个文件,涵盖139个Java源文件、30个JavaScript文件、24个Vue组件文件、12个PNG图片文件、7个XML配置文件、2个Git忽略文件、2个JSON文件、2个JPG图片文件、1个Markdown文档以及1个LICENSE文件。该系统分为前端Vue界面和后端SpringBoot服务,代码结构清晰,技术选型成熟,非常适合Java编程初学者和计算机专业学生学习和实践使用。
recommend-type

vb图书管理系统(论文+源代码+开题报告+外文翻译+答辩ppt)(20249q).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

CC-LINK远程IO模块在环境监控中的应用:技术与案例探讨

![CC-LINK](https://www.mitsubishielectric.com/fa/products/cnt/plcnet/pmerit/cclink_ie/concept/img/main_img.jpg) # 摘要 CC-LINK远程IO模块作为一种先进的工业通信技术,在环境监控系统中具有广泛应用。本文首先概述了CC-LINK远程IO模块的基本概念及其在环境监控系统中的基础理论,包括硬件组成、软件架构及技术优势。随后,详细介绍了其在实时监控与远程控制、系统集成与配置、安全维护方面的具体实践应用。案例分析部分深入探讨了CC-LINK模块在不同环境监控场景中的应用效果与技术解决