Harris图像配准的代码是什么
时间: 2024-06-10 14:09:52 浏览: 68
作为AI语言模型,我可以为您提供一些Harris图像配准的代码示例:
Python代码:
```python
import cv2
import numpy as np
# 读取两张图片
img1 = cv2.imread('image1.jpg')
img2 = cv2.imread('image2.jpg')
# 将图片转换为灰度图像
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
# 使用Harris角点检测算法检测关键点
harris = cv2.cornerHarris(gray1, 2, 3, 0.04)
harris = cv2.dilate(harris, None)
keypoints1 = np.argwhere(harris > 0.01 * harris.max())
keypoints1 = [cv2.KeyPoint(x[1], x[0], 3) for x in keypoints1]
# 对第二张图像进行同样的操作
harris = cv2.cornerHarris(gray2, 2, 3, 0.04)
harris = cv2.dilate(harris, None)
keypoints2 = np.argwhere(harris > 0.01 * harris.max())
keypoints2 = [cv2.KeyPoint(x[1], x[0], 3) for x in keypoints2]
# 使用SIFT算法提取特征点描述符
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.compute(gray1, keypoints1)
kp2, des2 = sift.compute(gray2, keypoints2)
# 进行特征匹配
bf = cv2.BFMatcher()
matches = bf.knnMatch(des1, des2, k=2)
# 筛选出好的匹配点
good_matches = []
for m, n in matches:
if m.distance < 0.75 * n.distance:
good_matches.append([m])
# 使用RANSAC算法估计变换矩阵
src_pts = np.float32([kp1[m[0].queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m[0].trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
# 进行图像配准
result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0]))
result[0:img2.shape[0], 0:img2.shape[1]] = img2
# 显示结果
cv2.imshow("Result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
Matlab代码:
```matlab
% 读取两张图片
img1 = imread('image1.jpg');
img2 = imread('image2.jpg');
% 将图片转换为灰度图像
gray1 = rgb2gray(img1);
gray2 = rgb2gray(img2);
% 使用Harris角点检测算法检测关键点
keypoints1 = detectHarrisFeatures(gray1);
keypoints2 = detectHarrisFeatures(gray2);
% 使用SIFT算法提取特征点描述符
[sift1, ~] = extractFeatures(gray1, keypoints1);
[sift2, ~] = extractFeatures(gray2, keypoints2);
% 进行特征匹配
bf = cv.DescriptorMatcher('BruteForce');
matches = bf.knnMatch(sift1, sift2, 2);
% 筛选出好的匹配点
good_matches = [];
for i = 1:size(matches, 1)
if matches(i,1).distance < 0.75 * matches(i,2).distance
good_matches = [good_matches; matches(i,1)];
end
end
% 使用RANSAC算法估计变换矩阵
src_pts = keypoints1(good_matches.queryIdx+1).Location;
dst_pts = keypoints2(good_matches.trainIdx+1).Location;
M = cv.findHomography(src_pts, dst_pts, 'Method', 'RANSAC', 'RansacReprojThreshold', 5.0);
% 进行图像配准
result = cv.warpPerspective(img1, M, 'DstSize', [size(img1,2)+size(img2,2), size(img1,1)]);
result(1:size(img2,1), 1:size(img2,2), :) = img2;
% 显示结果
imshow(result);
```
以上代码仅供参考,实际使用时需要根据具体情况进行调整和优化。
阅读全文
相关推荐
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![application/x-rar](https://img-home.csdnimg.cn/images/20210720083606.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![mp4](https://img-home.csdnimg.cn/images/20210720083504.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)