帮我写一个NSGA2的diamagnetic
时间: 2024-03-03 15:50:53 浏览: 100
NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种经典的多目标优化算法,可以解决多目标优化问题。它采用一种基于非支配排序的策略,将种群分为不同的前沿,通过精英策略和交叉、变异操作来不断优化种群,以尽可能接近真实前沿。下面是一个简单的NSGA-II算法的实现。
首先,我们需要定义一些基本的数据结构和算法操作:
```python
import random
# 定义一个个体类
class Individual:
def __init__(self, x, y):
self.x = x
self.y = y
self.fitness = None
self.rank = None
self.crowding_distance = None
def __lt__(self, other):
return self.rank < other.rank or (self.rank == other.rank and self.crowding_distance > other.crowding_distance)
def __eq__(self, other):
return self.x == other.x and self.y == other.y
# 定义一个种群类
class Population:
def __init__(self, size):
self.size = size
self.individuals = []
def create_individuals(self):
for _ in range(self.size):
x = random.random()
y = random.random()
individual = Individual(x, y)
self.individuals.append(individual)
# 定义一个快速非支配排序算法
def fast_non_dominated_sort(population):
frontiers = [[]]
ranks = {}
domination_count = {}
dominated_individuals = {}
# 初始化每个个体的支配关系和被支配数量
for i, individual in enumerate(population.individuals):
domination_count[i] = 0
dominated_individuals[i] = set()
# 将每个个体与其他个体比较,记录支配关系
for j, other_individual in enumerate(population.individuals):
if individual == other_individual:
continue
if individual.x > other_individual.x and individual.y > other_individual.y:
dominated_individuals[i].add(j)
elif individual.x < other_individual.x and individual.y < other_individual.y:
domination_count[i] += 1
# 如果支配数量为0,将其加入第一层
if domination_count[i] == 0:
ranks.setdefault(0, []).append(i)
individual.rank = 0
# 计算剩余层的个体
while ranks:
next_frontier = []
for i in ranks[0]:
for j in dominated_individuals[i]:
domination_count[j] -= 1
if domination_count[j] == 0:
ranks.setdefault(individual.rank + 1, []).append(j)
population.individuals[j].rank = individual.rank + 1
next_frontier.append(j)
del ranks[0]
if next_frontier:
frontiers.append(next_frontier)
return frontiers
# 定义一个拥挤度计算函数
def crowding_distance_assignment(frontier, objectives):
size = len(frontier)
for individual in frontier:
individual.crowding_distance = 0
for objective in objectives:
frontier.sort(key=lambda individual: individual.__getattribute__(objective))
frontier[0].crowding_distance = float('inf')
frontier[-1].crowding_distance = float('inf')
objective_range = max(frontier, key=lambda individual: individual.__getattribute__(objective)).__getattribute__(objective) - min(frontier, key=lambda individual: individual.__getattribute__(objective)).__getattribute__(objective)
for i in range(1, size - 1):
frontier[i].crowding_distance += (frontier[i + 1].__getattribute__(objective) - frontier[i - 1].__getattribute__(objective)) / objective_range
# 定义一个交叉操作函数
def crossover(parent1, parent2):
child1 = Individual(0, 0)
child2 = Individual(0, 0)
child1.x = (parent1.x + parent2.x) / 2
child1.y = (parent1.y + parent2.y) / 2
child2.x = (parent1.x - parent2.x) / 2
child2.y = (parent1.y - parent2.y) / 2
return child1, child2
# 定义一个变异操作函数
def mutate(individual, mutation_rate):
if random.random() < mutation_rate:
individual.x = random.random()
if random.random() < mutation_rate:
individual.y = random.random()
# 定义一个NSGA-II算法主函数
def nsga2(population, objectives, max_generations, crossover_rate, mutation_rate):
# 计算每个个体的适应度值
for individual in population.individuals:
individual.fitness = [0] * len(objectives)
for i, objective in enumerate(objectives):
individual.fitness[i] = individual.__getattribute__(objective)
# 迭代循环
for generation in range(max_generations):
# 快速非支配排序
frontiers = fast_non_dominated_sort(population)
# 计算拥挤度
for frontier in frontiers:
crowding_distance_assignment(frontier, objectives)
# 选择下一代
new_population = Population(population.size)
for i in range(population.size // 2):
parent1, parent2 = random.sample(population.individuals, 2)
child1, child2 = crossover(parent1, parent2)
mutate(child1, mutation_rate)
mutate(child2, mutation_rate)
new_population.individuals.append(child1)
new_population.individuals.append(child2)
# 合并种群
population.individuals += new_population.individuals
# 计算每个个体的适应度值
for individual in population.individuals:
individual.fitness = [0] * len(objectives)
for i, objective in enumerate(objectives):
individual.fitness[i] = individual.__getattribute__(objective)
# 快速非支配排序
frontiers = fast_non_dominated_sort(population)
# 选择下一代
new_population = Population(population.size)
i = 0
while len(new_population.individuals) < population.size:
if len(frontiers[i]) + len(new_population.individuals) <= population.size:
for j in frontiers[i]:
new_population.individuals.append(population.individuals[j])
i += 1
else:
crowding_distances = [(j, population.individuals[j].crowding_distance) for j in frontiers[i]]
crowding_distances.sort(key=lambda x: -x[1])
for j in crowding_distances[:population.size - len(new_population.individuals)]:
new_population.individuals.append(population.individuals[j[0]])
break
# 更新种群
population = new_population
# 返回最终种群
return population
```
这里我们实现了一个简单的NSGA-II算法,其中包括快速非支配排序、拥挤度计算、交叉、变异等基本操作。这个算法可以求解多目标优化问题,包括三目标优化问题。
阅读全文