用python写一个NSGA2的代码
时间: 2023-12-17 11:56:32 浏览: 129
NSGA2算法实现 (Python代码).zip
以下一个简单的Python实现NSGA-II算法的代码,其中包含了一些基本的函数,例如计算适应度、交叉、变异和选择等。
```python
import random
# 定义目标函数
def objective_function(x):
return x[0]**2 + x[1]**2
# 定义种群数量
POPULATION_SIZE = 100
# 定义变量范围
LOWER_BOUND = [-5, -5]
UPPER_BOUND = [5, 5]
# 定义交叉概率
CROSSOVER_PROBABILITY = 0.9
# 定义变异概率
MUTATION_PROBABILITY = 0.1
# 定义最大迭代次数
MAX_GENERATIONS = 100
# 初始化种群
def initialize_population():
population = []
for i in range(POPULATION_SIZE):
individual = []
for j in range(len(LOWER_BOUND)):
individual.append(random.uniform(LOWER_BOUND[j], UPPER_BOUND[j]))
population.append(individual)
return population
# 计算适应度
def calculate_fitness(population):
fitness = []
for individual in population:
fitness.append(objective_function(individual))
return fitness
# 选择操作
def select(population, fitness):
# 非支配排序
ranks = non_dominated_sort(population, fitness)
# 计算拥挤度
crowding_distances = crowding_distance(population, ranks)
# 选择
selected_population = []
for i in range(POPULATION_SIZE):
# 随机选择两个个体
parent1 = random.choice(ranks)
parent2 = random.choice(ranks)
# 如果两个个体所在的等级相同,就比较它们的拥挤度
if parent1 == parent2:
if crowding_distances[parent1] > crowding_distances[parent2]:
selected_population.append(population[parent1])
else:
selected_population.append(population[parent2])
# 如果两个个体所在的等级不同,就选择等级较低的
elif parent1 < parent2:
selected_population.append(population[parent1])
else:
selected_population.append(population[parent2])
return selected_population
# 非支配排序
def non_dominated_sort(population, fitness):
# 初始化
ranks = []
S = {}
n = {}
# 初始化每个个体的支配集合和被支配数量
for p in range(len(population)):
S[p] = []
n[p] = 0
# 计算每个个体的支配关系
for q in range(len(population)):
if fitness[p] < fitness[q]:
S[p].append(q)
elif fitness[p] > fitness[q]:
n[p] += 1
# 如果p没有被任何个体支配,就是第一等级的个体
if n[p] == 0:
ranks.append(p)
# 初始化等级
i = 0
# 进行非支配排序
while ranks:
i += 1
Q = []
for p in ranks:
for q in S[p]:
n[q] -= 1
if n[q] == 0:
Q.append(q)
ranks = Q
return i-1
# 计算拥挤度
def crowding_distance(population, ranks):
# 初始化拥挤度
crowding_distances = {}
# 每个等级的个体数
num_ranks = len(set(ranks))
# 计算每个等级的拥挤度
for i in range(num_ranks):
# 当前等级的个体
rank_i = [j for j in range(len(population)) if ranks[j] == i]
# 当前等级的个体数
num_rank_i = len(rank_i)
# 如果当前等级的个体数为0,就跳过
if num_rank_i == 0:
continue
# 计算每个目标函数的最大值和最小值
max_fitness = [max([population[j][k] for j in rank_i]) for k in range(len(population[0]))]
min_fitness = [min([population[j][k] for j in rank_i]) for k in range(len(population[0]))]
# 对每个个体按照每个目标函数进行排序
sorted_rank_i = sorted(rank_i, key=lambda x: [population[x][k] for k in range(len(population[0]))])
# 给第一个和最后一个个体的拥挤度赋值为无穷大
crowding_distances[sorted_rank_i[0]] = float('inf')
crowding_distances[sorted_rank_i[-1]] = float('inf')
# 计算每个个体的拥挤度
for j in range(1, num_rank_i-1):
crowding_distances[sorted_rank_i[j]] = (population[sorted_rank_i[j+1]][i] - population[sorted_rank_i[j-1]][i]) / (max_fitness[i] - min_fitness[i])
return crowding_distances
# 交叉操作
def crossover(parent1, parent2):
# 随机选择交叉点
crossover_point = random.randint(1, len(parent1)-1)
# 交叉
child1 = parent1[:crossover_point] + parent2[crossover_point:]
child2 = parent2[:crossover_point] + parent1[crossover_point:]
return child1, child2
# 变异操作
def mutation(individual):
# 随机选择变异位置
mutation_point = random.randint(0, len(individual)-1)
# 变异
individual[mutation_point] = random.uniform(LOWER_BOUND[mutation_point], UPPER_BOUND[mutation_point])
return individual
# 主函数
def main():
# 初始化种群
population = initialize_population()
# 进行迭代
for generation in range(MAX_GENERATIONS):
print('Generation:', generation+1)
# 计算适应度
fitness = calculate_fitness(population)
# 选择操作
selected_population = select(population, fitness)
# 交叉操作
offspring_population = []
for i in range(0, POPULATION_SIZE-1, 2):
parent1 = selected_population[i]
parent2 = selected_population[i+1]
if random.random() < CROSSOVER_PROBABILITY:
child1, child2 = crossover(parent1, parent2)
else:
child1, child2 = parent1, parent2
# 变异操作
if random.random() < MUTATION_PROBABILITY:
child1 = mutation(child1)
if random.random() < MUTATION_PROBABILITY:
child2 = mutation(child2)
offspring_population.append(child1)
offspring_population.append(child2)
# 更新种群
population = offspring_population
if __name__ == '__main__':
main()
```
请注意,这只是一个简单的实现,可能不够高效或准确。如果您想要更好的NSGA-II实现,建议使用现有的Python库,例如DEAP或PyGMO。
阅读全文