for epoch in range(N_EPOCHS): model.train() epoch_loss= [] pbar = tqdm(traindataloader) pbar.set_description("[Train Epoch {}]".format(epoch)) for batch_idx, batch_data in enumerate(pbar): input_ids = batch_data["input_ids"].to(device) token_type_ids = batch_data["token_type_ids"].to(device) attention_mask = batch_data["attention_mask"].to(device) model.zero_grad() outputs = model.forward(input_ids=input_ids, attention_mask=attention_mask) loss = calculate_loss(outputs, input_ids, token_type_ids, SUMMARY_ID) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), MAX_GRAD_NORM) epoch_loss.append(loss.item()) optimizer.step() scheduler.step() loss_vals.append(np.mean(epoch_loss)) print("epoch=",epoch,"train loss=",np.mean(epoch_loss),flush=True)这段什么意思
时间: 2024-04-28 11:27:20 浏览: 130
这段代码是用于训练神经网络模型的主要代码。它采用了迭代的方式对数据集进行训练,每个迭代称为一个epoch。在每个epoch中,模型都会被设置为训练模式(model.train())。接着,代码使用一个进度条(tqdm)来显示训练进度,并且在进度条上方显示当前的epoch数。在每个batch中,代码会把训练数据(包含input_ids、token_type_ids和attention_mask)送到设备上(GPU或CPU)。模型的梯度会被清零(model.zero_grad()),然后模型会根据输入数据计算输出(model.forward(input_ids=input_ids, attention_mask=attention_mask))。接下来,代码会计算损失值(loss)并更新模型参数(optimizer.step())。在更新模型参数之前,代码会对梯度进行裁剪(torch.nn.utils.clip_grad_norm_()),以防止梯度爆炸。在每个epoch结束时,代码会计算该epoch的平均损失值,并将其保存在loss_vals列表中。最后,代码会打印出当前epoch的训练损失值。这些超参数的设置可以影响模型的训练效果和速度。
相关问题
To do multiple steps, we implement a function the_loop that iterates over a dataloader. It should do a training step per batch for epochs. After one epoch, the loss on the validation set should be calculated.帮我根据这个要求补充完整下面代码中。。。的部分。 def the_loop(net, optimizer, train_loader, val_loader=None, epochs=None, swa_model=None, swa_start=5): if epochs is None: raise Exception("a training duration must be given: set epochs") log_iterval = 1 running_mean = 0. loss = Tensor([0.]).cuda() losses = [] val_losses = [] states = [] i, j = 0, 0 pbar = tqdm(train_loader, desc=f"epoch {i}", postfix={"loss": loss.item(), "step": j}) for i in range(epochs): running_mean = 0. j = 0 pbar.set_description(f"epoch {i}") pbar.refresh() pbar.reset() for j, batch in enumerate(train_loader): # implement training step by # - appending the current states to `states` # - doing a training_step # - appending the current loss to the `losses` list # - update the running_mean for logging ... if j % log_iterval == 0 and j != 0: pbar.set_postfix({"loss": running_mean.item(), "step": j}) running_mean = 0. pbar.update() if i > swa_start and swa_model is not None: swa_model.update_parameters(net) if val_loader is not None: # evaluate the current net on the validation data loader and # collect all losses in the ´val_loss´ list ... pbar.refresh() if val_loader is not None: return losses, states, val_losses return losses, states
Here is the completed code:
```python
def the_loop(net, optimizer, train_loader, val_loader=None, epochs=None, swa_model=None, swa_start=5):
if epochs is None:
raise Exception("a training duration must be given: set epochs")
log_iterval = 1
running_mean = 0.
loss = torch.Tensor([0.]).cuda()
losses = []
val_losses = []
states = []
i, j = 0, 0
pbar = tqdm(train_loader, desc=f"epoch {i}", postfix={"loss": loss.item(), "step": j})
for i in range(epochs):
running_mean = 0.
j = 0
pbar.set_description(f"epoch {i}")
pbar.refresh()
pbar.reset()
for j, batch in enumerate(train_loader):
# implement training step by
# - appending the current states to `states`
# - doing a training_step
# - appending the current loss to the `losses` list
# - update the running_mean for logging
states.append(net.state_dict())
optimizer.zero_grad()
output = net(batch)
batch_loss = loss_function(output, batch.target)
batch_loss.backward()
optimizer.step()
losses.append(batch_loss.item())
running_mean = (running_mean * j + batch_loss.item()) / (j + 1)
if j % log_iterval == 0 and j != 0:
pbar.set_postfix({"loss": running_mean, "step": j})
running_mean = 0.
pbar.update()
if i > swa_start and swa_model is not None:
swa_model.update_parameters(net)
if val_loader is not None:
val_loss = 0.
with torch.no_grad():
for val_batch in val_loader:
val_output = net(val_batch)
val_loss += loss_function(val_output, val_batch.target).item()
val_loss /= len(val_loader)
val_losses.append(val_loss)
pbar.refresh()
if val_loader is not None:
return losses, states, val_losses
return losses, states
```
Note that the training step implementation assumes that you have already defined a `loss_function` and that the batch data has an attribute named `target` that contains the ground truth labels.
def train(args): setup_logging(args.run_name) device = args.device # 加载数据 dataloader = get_data(args) model = UNet().to(device) optimizer = optim.AdamW(model.parameters(), lr=args.lr) # 定义损失函数 mse = nn.MSELoss() diffusion = Diffusion(img_size=args.image_size, device=device) logger = SummaryWriter(os.path.join("runs", args.run_name)) l = len(dataloader) for epoch in range(args.epochs): logging.info(f"Starting epoch {epoch}:") pbar = tqdm(dataloader) for i, (images, _) in enumerate(pbar): images = images.to(device) t = diffusion.sample_timesteps(images.shape[0]).to(device) x_t, noise = diffusion.noise_images(images, t) predicted_noise = model(x_t, t) loss = mse(noise, predicted_noise) optimizer.zero_grad() loss.backward() optimizer.step() # 新加的 pbar.set_postfix(MSE=loss.item()) logger.add_scalar("MSE", loss.item(), global_step=epoch * l + i) sampled_images = diffusion.sample(model, n=images.shape[0]) save_images(sampled_images, os.path.join("results", args.run_name, f"{epoch}.jpg"))这段代码的功能是什么
这段代码实现了一个图像去噪的训练过程。具体来说,它使用了 UNet 模型对输入的带噪声的图像进行去噪,其中噪声的分布是通过 Diffusion 模型建模的。模型的训练使用了 MSE 损失和 AdamW 优化器,并使用了 TensorBoard 进行可视化。在训练过程中,每个 epoch 都会将模型生成的去噪图像保存在指定的文件夹中,以便后续的分析和比较。
阅读全文