基于pytorch环境用arcface训练模型的代码
时间: 2023-08-28 20:08:11 浏览: 171
vgg模型-基于人工智能的卷积网络训练识别鸡和兔-不含数据集图片-含逐行注释和说明文档.zip
以下是基于PyTorch环境使用ArcFace训练模型的代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import argparse
from tqdm import tqdm
import math
# 定义模型
class ArcFace(nn.Module):
def __init__(self, num_classes=10, emb_size=2):
super(ArcFace, self).__init__()
self.num_classes = num_classes
self.emb_size = emb_size
self.features = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(128, emb_size, bias=False)
self.classifier = nn.Linear(emb_size, num_classes, bias=False)
def forward(self, x, label=None):
x = self.features(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
if label is not None:
# 计算cos(theta)
cosine = F.linear(F.normalize(x), F.normalize(self.classifier.weight))
# 计算theta
theta = torch.acos(torch.clamp(cosine, -1.0 + 1e-7, 1.0 - 1e-7))
# 计算one-hot编码
one_hot = torch.zeros_like(cosine)
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
# 计算计算cos(theta + m)
new_cosine = torch.cos(theta + 0.1)
# 计算cos(theta + m)与one-hot编码的乘积
output = new_cosine * cosine - one_hot * (new_cosine - cosine)
else:
output = self.classifier(x)
return output
# 定义训练方法
def train(model, device, train_loader, optimizer, epoch, log_interval):
model.train()
train_loss = 0
correct = 0
total = 0
pbar = tqdm(train_loader)
for batch_idx, (data, labels) in enumerate(pbar):
data, labels = data.to(device), labels.to(device)
optimizer.zero_grad()
output = model(data, labels)
loss = F.cross_entropy(output, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = output.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
pbar.set_description('Train epoch {} Loss: {:.6f} Acc: {:.4f}'.format(
epoch, train_loss / (batch_idx + 1), 100. * correct / total))
# 打印日志
if batch_idx % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f} Acc: {:.4f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item(), 100. * correct / total))
# 定义测试方法
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, labels in test_loader:
data, labels = data.to(device), labels.to(device)
output = model(data)
test_loss += F.cross_entropy(output, labels, reduction='sum').item()
_, predicted = output.max(1)
correct += predicted.eq(labels).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# 解析参数
parser = argparse.ArgumentParser(description='PyTorch ArcFace Example')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--test-batch-size', type=int, default=128, metavar='N',
help='input batch size for testing (default: 128)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.1, metavar='LR',
help='learning rate (default: 0.1)')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='Save the trained model')
args = parser.parse_args()
# 判断是否使用GPU
use_cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device('cuda' if use_cuda else 'cpu')
# 加载数据
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST('../data', train=True, download=True,
transform=transform)
test_dataset = datasets.MNIST('../data', train=False,
transform=transform)
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = DataLoader(test_dataset, batch_size=args.test_batch_size, shuffle=True, **kwargs)
# 初始化模型
model = ArcFace(num_classes=10, emb_size=2).to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
# 训练模型
for epoch in range(1, args.epochs + 1):
train(model, device, train_loader, optimizer, epoch, args.log_interval)
test(model, device, test_loader)
# 保存模型
if args.save_model:
torch.save(model.state_dict(), 'arcface_mnist.pt')
if __name__ == '__main__':
main()
```
注意,这里的模型是使用MNIST数据集进行训练的,如果需要使用其他数据集,可以根据需要更改数据集的加载方式。同时,这里的代码只是一个示例,实际使用时还需要根据具体情况进行修改。
阅读全文