基于pytorch环境对arcface训练出来的模型进行测试的代码
时间: 2023-09-16 14:09:18 浏览: 87
SRMD-Pytorch:SRMD training, testing, model checking, model converting derived from csznKAIR (SRMD超分辨率模型pytorch)
以下是基于PyTorch环境对ArcFace训练出来的模型进行测试的代码示例:
```python
import torch
import torchvision.transforms as transforms
from PIL import Image
from model import ArcFaceModel # 自己定义的模型
from utils import load_facebank # 加载人脸库
# 定义测试函数
def test(conf, img_path, model, device, facebank, transform):
img = Image.open(img_path).convert('RGB')
img = transform(img).to(device)
# 获取特征向量
with torch.no_grad():
feature = model(img.unsqueeze(0)).cpu().detach().numpy()
# 计算余弦相似度
sims = []
for i in range(len(facebank)):
sim = np.dot(feature, facebank[i]) / (np.linalg.norm(feature) * np.linalg.norm(facebank[i]))
sims.append(sim)
# 获取最大相似度和对应的标签
max_sim = max(sims)
max_idx = sims.index(max_sim)
if max_sim >= conf.threshold:
return conf.facebank_names[max_idx]
else:
return 'Unknown'
# 加载模型和人脸库
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = ArcFaceModel().to(device)
model.load_state_dict(torch.load('arcface_model.pth'))
model.eval()
facebank, conf = load_facebank('facebank.npy', 'conf.json')
# 定义转换器
transform = transforms.Compose([
transforms.Resize((112, 112)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# 测试图片
img_path = 'test.jpg'
label = test(conf, img_path, model, device, facebank, transform)
print(label)
```
需要注意的是,在代码中需要定义自己的模型和人脸库加载函数。此外,还需要加载`conf.json`文件,该文件包含人脸库中每个人的标签和阈值等信息。
阅读全文