基于pytorch环境的arcface训练模型并测试模型的代码
时间: 2023-08-29 12:06:58 浏览: 161
人脸识别项目实战arcface-pytorch源码+预训练模型+测试集.zip
以下是基于 PyTorch 环境的 ArcFace 训练和测试模型的代码:
```python
import torch
import torch.nn as nn
from torchvision import transforms, datasets
import torch.utils.data as data
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import numpy as np
import time
from sklearn.metrics import accuracy_score
# 定义 ArcFace 损失函数
class ArcfaceLoss(nn.Module):
def __init__(self, s=64.0, m=0.5):
super(ArcfaceLoss, self).__init__()
self.s = s
self.m = m
def forward(self, inputs, labels):
cos_theta = inputs
cos_theta = torch.clamp(cos_theta, -1, 1)
phi = cos_theta - self.m
one_hot = torch.zeros(cos_theta.size()).cuda()
one_hot.scatter_(1, labels.view(-1, 1).long(), 1)
output = (one_hot * phi) + ((1.0 - one_hot) * cos_theta)
output *= self.s
return output
# 定义 ResNet50 网络
class ResNet50(nn.Module):
def __init__(self, num_classes=10):
super(ResNet50, self).__init__()
self.resnet50 = torch.hub.load('pytorch/vision:v0.6.0', 'resnet50', pretrained=True)
self.resnet50.fc = nn.Linear(2048, num_classes)
def forward(self, x):
x = self.resnet50(x)
return x
# 定义数据增强方法
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
test_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# 加载数据集
train_dataset = datasets.ImageFolder(root='train', transform=train_transform)
test_dataset = datasets.ImageFolder(root='test', transform=test_transform)
# 定义数据加载器
train_loader = data.DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
test_loader = data.DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=4)
# 定义模型和损失函数
model = ResNet50(num_classes=10).cuda()
criterion = ArcfaceLoss().cuda()
# 定义优化器和学习率调整方法
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
scheduler = lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
# 训练模型
def train(model, criterion, optimizer, scheduler, num_epochs=10):
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch+1, num_epochs))
print('-' * 10)
model.train()
running_loss = 0.0
for i, (inputs, labels) in enumerate(train_loader):
inputs = inputs.cuda()
labels = labels.cuda()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
if i % 10 == 9:
print('Batch {}/{} Loss: {:.4f}'.format(i+1, len(train_loader), loss.item()))
scheduler.step()
epoch_loss = running_loss / len(train_dataset)
print('Train Loss: {:.4f}'.format(epoch_loss))
test(model)
# 测试模型
def test(model):
model.eval()
running_corrects = 0
for inputs, labels in test_loader:
inputs = inputs.cuda()
labels = labels.cuda()
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
running_corrects += torch.sum(preds == labels.data)
accuracy = running_corrects.double() / len(test_dataset)
print('Test Accuracy: {:.4f}'.format(accuracy))
if __name__ == '__main__':
train(model, criterion, optimizer, scheduler, num_epochs=10)
```
在上述代码中,我们使用 PyTorch 内置的 ResNet-50 网络,并将其用作 ArcFace 训练模型的基础。我们还定义了 ArcFace 损失函数,并使用 SGD 优化器和学习率调整方法对模型进行训练。最后,我们使用测试数据集对模型进行测试,并计算测试精度。
阅读全文