lbp-svm的图像分类python
时间: 2023-05-29 10:06:57 浏览: 313
python实现LBP方法提取图像纹理特征实现分类的步骤
LBP-SVM(Local Binary Pattern-Support Vector Machine)是一种基于局部二值模式和支持向量机的图像分类方法。在Python中,可以使用OpenCV和scikit-learn库来实现LBP-SVM图像分类。
以下是一个简单的LBP-SVM图像分类示例代码:
```python
import cv2
import numpy as np
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 读取图像数据和标签
def read_data():
data = []
labels = []
for i in range(1, 11):
for j in range(1, 6):
img = cv2.imread(f"data/{i}_{j}.jpg", 0)
lbp = local_binary_pattern(img, 8, 1)
data.append(lbp.ravel())
labels.append(i)
return np.array(data), np.array(labels)
# 计算局部二值模式
def local_binary_pattern(img, num_points, radius):
lbp = np.zeros_like(img)
for i in range(radius, img.shape[0]-radius):
for j in range(radius, img.shape[1]-radius):
center = img[i, j]
bin_str = ''
for k in range(num_points):
x = int(np.round(i + radius * np.cos(2 * np.pi * k / num_points)))
y = int(np.round(j - radius * np.sin(2 * np.pi * k / num_points)))
if img[x, y] > center:
bin_str += '1'
else:
bin_str += '0'
lbp[i, j] = int(bin_str, 2)
return lbp
# 划分训练集和测试集
data, labels = read_data()
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=42)
# 训练SVM模型
clf = SVC(kernel='linear', C=1, gamma='auto')
clf.fit(X_train, y_train)
# 预测测试集并计算准确率
y_pred = clf.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f"Accuracy: {acc}")
```
该代码首先读取图像数据和标签,然后使用`local_binary_pattern`函数计算每张图像的局部二值模式。接着,使用`train_test_split`函数将数据划分为训练集和测试集。最后,使用`SVC`函数训练SVM模型并预测测试集,计算准确率。
阅读全文