self.alpha = tf.exp(log_alpha)
时间: 2024-02-01 20:04:01 浏览: 153
这段代码是用来将一个 tensor 中的自然对数值转换为对应的值的指数函数,即将一个 tensor 中的对数值变为它对应的值。这个操作常用于生成分布的参数,如 Gumbel Softmax 分布的温度参数 alpha,它应该是一个正数,而且取值范围应该是 (0, +∞)。因此,我们首先用对数函数将它转换为实数范围内的值,然后再通过指数函数将其还原为正数。这样做的好处是可以避免模型输出的值过大或过小,从而稳定模型的训练。
相关问题
labda = variant['labda'] alpha = variant['alpha'] alpha3 = variant['alpha3'] log_labda = tf.get_variable('lambda', None, tf.float32, initializer=tf.log(labda)) log_alpha = tf.get_variable('alpha', None, tf.float32, initializer=tf.log(alpha)) # Entropy Temperature self.labda = tf.clip_by_value(tf.exp(log_labda), *SCALE_lambda_MIN_MAX) self.alpha = tf.exp(log_alpha)
这段代码是用TensorFlow定义了几个变量,包括lambda、alpha和alpha3。其中lambda和alpha是通过logda和log_alpha进行初始化的,它们分别表示一个分布的参数。在这段代码中,labda和alpha都是从一个字典variant中读取的,SCALE_lambda_MIN_MAX是一个常量范围。最后,通过tf.clip_by_value函数将self.labda限制在一个范围内,self.alpha则没有进行限制。这段代码的具体作用可能需要结合上下文来分析。
以Tensorflow为框架编写带有更新温度系数alpha的SAC算法
好的,以下是基于Tensorflow框架编写带有更新温度系数alpha的SAC算法的代码示例:
```python
import tensorflow as tf
import numpy as np
class SAC:
def __init__(self, state_dim, action_dim, alpha_init=0.1, alpha_lr=1e-3, alpha_target=0.2):
self.state_dim = state_dim
self.action_dim = action_dim
self.alpha_init = alpha_init
self.alpha_lr = alpha_lr
self.alpha_target = alpha_target
self.alpha = tf.Variable(self.alpha_init, dtype=tf.float32, name='alpha')
self.policy = self._build_policy_net()
self.q1_net, self.q2_net = self._build_q_nets()
self.target_q1_net, self.target_q2_net = self._build_q_nets()
self.q1_optimizer = tf.optimizers.Adam(learning_rate=1e-3)
self.q2_optimizer = tf.optimizers.Adam(learning_rate=1e-3)
self.policy_optimizer = tf.optimizers.Adam(learning_rate=1e-3)
self.update_target_q1_net = self._get_target_net_update_op(self.q1_net, self.target_q1_net)
self.update_target_q2_net = self._get_target_net_update_op(self.q2_net, self.target_q2_net)
def _build_policy_net(self):
input_layer = tf.keras.layers.Input(shape=(self.state_dim,))
hidden_layer_1 = tf.keras.layers.Dense(256, activation='relu')(input_layer)
hidden_layer_2 = tf.keras.layers.Dense(256, activation='relu')(hidden_layer_1)
output_layer = tf.keras.layers.Dense(self.action_dim, activation='tanh')(hidden_layer_2)
mean = tf.keras.layers.Lambda(lambda x: x * 2)(output_layer)
log_std = tf.Variable(-0.5 * np.ones(self.action_dim, dtype=np.float32), name='log_std')
std = tf.exp(log_std)
dist = tfp.distributions.Normal(mean, std)
action = dist.sample()
policy = tf.keras.models.Model(inputs=input_layer, outputs=[action, mean, std])
return policy
def _build_q_nets(self):
state_input = tf.keras.layers.Input(shape=(self.state_dim,))
action_input = tf.keras.layers.Input(shape=(self.action_dim,))
concat_layer = tf.keras.layers.Concatenate()([state_input, action_input])
hidden_layer_1 = tf.keras.layers.Dense(256, activation='relu')(concat_layer)
hidden_layer_2 = tf.keras.layers.Dense(256, activation='relu')(hidden_layer_1)
q_output = tf.keras.layers.Dense(1)(hidden_layer_2)
q_net = tf.keras.models.Model(inputs=[state_input, action_input], outputs=q_output)
return q_net, q_net
def _get_target_net_update_op(self, net, target_net, tau=0.005):
target_weights = target_net.get_weights()
weights = net.get_weights()
update_target_weights = [target_weights[i] * (1 - tau) + weights[i] * tau for i in range(len(weights))]
return tf.group([target_net.weights[i].assign(update_target_weights[i]) for i in range(len(target_weights))])
def get_action(self, state):
action, mean, std = self.policy(state)
return action.numpy()[0], mean.numpy()[0], std.numpy()[0]
def update(self, memory, batch_size=100, gamma=0.99, tau=0.005, alpha_target_entropy=-np.prod(self.action_dim)):
state, action, reward, next_state, done = memory.sample(batch_size)
with tf.GradientTape(persistent=True) as tape:
# Compute Q-values
q1 = self.q1_net([state, action])
q2 = self.q2_net([state, action])
# Compute target Q-values
target_action, target_mean, target_std = self.policy(next_state)
target_dist = tfp.distributions.Normal(target_mean, target_std)
target_entropy = -target_dist.entropy()
target_q1 = self.target_q1_net([next_state, target_action])
target_q2 = self.target_q2_net([next_state, target_action])
target_q = tf.minimum(target_q1, target_q2) - self.alpha * target_entropy
target_q = tf.stop_gradient(target_q)
td_error_1 = tf.abs(q1 - (reward + gamma * target_q * (1 - done)))
td_error_2 = tf.abs(q2 - (reward + gamma * target_q * (1 - done)))
# Compute losses and gradients
q1_loss = tf.reduce_mean(td_error_1)
q2_loss = tf.reduce_mean(td_error_2)
q1_grads = tape.gradient(q1_loss, self.q1_net.trainable_variables)
q2_grads = tape.gradient(q2_loss, self.q2_net.trainable_variables)
# Update Q-networks
self.q1_optimizer.apply_gradients(zip(q1_grads, self.q1_net.trainable_variables))
self.q2_optimizer.apply_gradients(zip(q2_grads, self.q2_net.trainable_variables))
# Compute policy loss and gradients
action, mean, std = self.policy(state)
dist = tfp.distributions.Normal(mean, std)
entropy = dist.entropy()
q1 = self.q1_net([state, action])
q2 = self.q2_net([state, action])
q = tf.minimum(q1, q2)
policy_loss = tf.reduce_mean(self.alpha * entropy - q)
policy_grads = tape.gradient(policy_loss, self.policy.trainable_variables)
self.policy_optimizer.apply_gradients(zip(policy_grads, self.policy.trainable_variables))
# Update target networks
self.update_target_q1_net
self.update_target_q2_net
# Update alpha
alpha_loss = -tf.reduce_mean(self.alpha * (entropy + alpha_target_entropy))
alpha_grads = tape.gradient(alpha_loss, [self.alpha])
self.alpha_optimizer.apply_gradients(zip(alpha_grads, [self.alpha]))
# Update temperature coefficient alpha
self.alpha = tf.clip_by_value(self.alpha + self.alpha_lr * (self.alpha_target - tf.exp(self.log_alpha)), 1e-4, 1e2)
```
在这个SAC算法的实现中,我们引入了一个温度系数alpha,其初始值为alpha_init,目标值为alpha_target。在每次更新中,我们会计算出当前策略分布和目标分布的交叉熵,并将其乘以alpha,得到一个entropy term,用来调整策略的探索程度。我们同时也会计算出一个alpha_loss,用来更新温度系数alpha。
需要注意的是,在更新温度系数alpha时,我们对其进行了一个clip操作,将其限制在了一个较小的范围内,以防止alpha的值过大或过小导致算法失效。
阅读全文