请编写一个keras框架下的移动平均滤波,实现对格式为csv的三维时序信号去噪,具体包括x方向,y方向,z方向的时序信号,计算去噪后的SNR,MSE,PSNR并生成csv文件保存
时间: 2023-06-14 07:07:47 浏览: 87
好的,我可以为您提供一个keras框架下的移动平均滤波的代码实现。
首先,我们需要导入必要的库:numpy、pandas、sklearn和keras。
```python
import numpy as np
import pandas as pd
from sklearn.metrics import mean_squared_error, mean_absolute_error, peak_signal_noise_ratio
from keras.models import Sequential
from keras.layers import Dense
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
```
然后,我们需要编写一个函数来读取csv格式的三维时序信号数据,并将其转换为numpy数组。
```python
def read_data(file_path):
data = pd.read_csv(file_path, header=None)
data = np.array(data)
return data
```
接着,我们可以编写一个函数来实现移动平均滤波。在这个函数中,我们需要指定窗口大小和步长来计算滑动窗口中的平均值。我们需要分别对x、y和z方向的时序信号进行滤波。
```python
def moving_average_filter(data, window_size, step):
filtered_data = np.zeros_like(data)
for i in range(0, data.shape[0], step):
if i + window_size < data.shape[0]:
filtered_data[i:i+window_size, 0] = np.convolve(data[i:i+window_size, 0], np.ones((window_size,))/window_size, mode='valid')
filtered_data[i:i+window_size, 1] = np.convolve(data[i:i+window_size, 1], np.ones((window_size,))/window_size, mode='valid')
filtered_data[i:i+window_size, 2] = np.convolve(data[i:i+window_size, 2], np.ones((window_size,))/window_size, mode='valid')
else:
filtered_data[i:, 0] = np.convolve(data[i:, 0], np.ones((data.shape[0]-i,))/window_size, mode='valid')
filtered_data[i:, 1] = np.convolve(data[i:, 1], np.ones((data.shape[0]-i,))/window_size, mode='valid')
filtered_data[i:, 2] = np.convolve(data[i:, 2], np.ones((data.shape[0]-i,))/window_size, mode='valid')
return filtered_data
```
接下来,我们可以编写一个函数来计算信噪比(SNR)、均方误差(MSE)和峰值信噪比(PSNR)。
```python
def calculate_metrics(data, filtered_data):
snr = 10*np.log10(np.sum(data**2)/np.sum((data-filtered_data)**2))
mse = mean_squared_error(data, filtered_data)
psnr = peak_signal_noise_ratio(data, filtered_data)
return snr, mse, psnr
```
最后,我们可以编写一个函数来保存去噪后的数据和计算的SNR、MSE和PSNR到csv文件中。
```python
def save_data(file_path, data, filtered_data, snr, mse, psnr):
df = pd.DataFrame(data=np.hstack((data, filtered_data)), columns=['x', 'y', 'z', 'filtered_x', 'filtered_y', 'filtered_z'])
df.to_csv(file_path, index=False)
with open('metrics.txt', 'w') as f:
f.write('SNR: %.4f\n' % snr)
f.write('MSE: %.4f\n' % mse)
f.write('PSNR: %.4f\n' % psnr)
```
完整代码:
```python
import numpy as np
import pandas as pd
from sklearn.metrics import mean_squared_error, mean_absolute_error, peak_signal_noise_ratio
from keras.models import Sequential
from keras.layers import Dense
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
def read_data(file_path):
data = pd.read_csv(file_path, header=None)
data = np.array(data)
return data
def moving_average_filter(data, window_size, step):
filtered_data = np.zeros_like(data)
for i in range(0, data.shape[0], step):
if i + window_size < data.shape[0]:
filtered_data[i:i+window_size, 0] = np.convolve(data[i:i+window_size, 0], np.ones((window_size,))/window_size, mode='valid')
filtered_data[i:i+window_size, 1] = np.convolve(data[i:i+window_size, 1], np.ones((window_size,))/window_size, mode='valid')
filtered_data[i:i+window_size, 2] = np.convolve(data[i:i+window_size, 2], np.ones((window_size,))/window_size, mode='valid')
else:
filtered_data[i:, 0] = np.convolve(data[i:, 0], np.ones((data.shape[0]-i,))/window_size, mode='valid')
filtered_data[i:, 1] = np.convolve(data[i:, 1], np.ones((data.shape[0]-i,))/window_size, mode='valid')
filtered_data[i:, 2] = np.convolve(data[i:, 2], np.ones((data.shape[0]-i,))/window_size, mode='valid')
return filtered_data
def calculate_metrics(data, filtered_data):
snr = 10*np.log10(np.sum(data**2)/np.sum((data-filtered_data)**2))
mse = mean_squared_error(data, filtered_data)
psnr = peak_signal_noise_ratio(data, filtered_data)
return snr, mse, psnr
def save_data(file_path, data, filtered_data, snr, mse, psnr):
df = pd.DataFrame(data=np.hstack((data, filtered_data)), columns=['x', 'y', 'z', 'filtered_x', 'filtered_y', 'filtered_z'])
df.to_csv(file_path, index=False)
with open('metrics.txt', 'w') as f:
f.write('SNR: %.4f\n' % snr)
f.write('MSE: %.4f\n' % mse)
f.write('PSNR: %.4f\n' % psnr)
if __name__ == '__main__':
file_path = 'data.csv'
window_size = 10
step = 5
data = read_data(file_path)
filtered_data = moving_average_filter(data, window_size, step)
snr, mse, psnr = calculate_metrics(data, filtered_data)
save_data('filtered_data.csv', data, filtered_data, snr, mse, psnr)
```
在这个例子中,我们使用了一个窗口大小为10、步长为5的移动平均滤波器对csv格式的三维时序信号进行去噪,并计算了SNR、MSE和PSNR。去噪后的数据和计算的指标被保存在filtered_data.csv文件和metrics.txt文件中。
阅读全文