python作者共现并计算节点指标
时间: 2023-06-28 14:08:26 浏览: 101
要实现共现分析并计算节点指标,可以使用Python中的网络分析库NetworkX。以下是一个简单的示例代码:
```python
import networkx as nx
# 构建共现图
G = nx.Graph()
with open('file.txt', 'r') as f:
for line in f:
words = line.strip().split()
for i in range(len(words)):
for j in range(i+1, len(words)):
if G.has_edge(words[i], words[j]):
G[words[i]][words[j]]['weight'] += 1
else:
G.add_edge(words[i], words[j], weight=1)
# 计算节点指标
degree_centrality = nx.degree_centrality(G)
closeness_centrality = nx.closeness_centrality(G)
betweenness_centrality = nx.betweenness_centrality(G)
# 输出结果
print("Degree centrality:")
print(degree_centrality)
print("Closeness centrality:")
print(closeness_centrality)
print("Betweenness centrality:")
print(betweenness_centrality)
```
其中,'file.txt'是包含文本数据的文件名。在构建共现图时,我们首先读取文件中的每一行,并将每个单词作为节点添加到图中。然后,对于每一行中的任意两个单词,我们在它们之间添加一条边,并设置边的权重为它们在文本中出现的次数。最后,我们使用三种常见的节点指标来计算每个节点的重要性:度中心性、接近中心性和介数中心性。
阅读全文