帮我写利用RRT算法实现垂直车位自动泊车的代码,需满足车辆运动学约束,要求输出泊车轨迹并绘制泊车轨迹
时间: 2024-01-11 20:02:19 浏览: 124
垂直泊车规划仿真matlab
5星 · 资源好评率100%
好的,下面是一个基于Python的RRT算法实现垂直车位自动泊车的代码,包括车辆的运动学约束和泊车轨迹的输出和绘制。
```python
import matplotlib.pyplot as plt
import numpy as np
# 定义车辆运动学参数
MAX_SPEED = 5.0 # 最大速度
MAX_STEER = np.pi/4 # 最大转角
MAX_ACC = 2.0 # 最大加速度
# 定义RRT算法参数
MAX_ITER = 5000 # 最大迭代次数
GOAL_RADIUS = 0.5 # 目标半径
STEP_SIZE = 0.5 # 步长
class Node:
def __init__(self, x, y, theta):
self.x = x
self.y = y
self.theta = theta
self.parent = None
class RRT:
def __init__(self, start, goal, obstacles):
self.start = Node(start[0], start[1], start[2])
self.goal = Node(goal[0], goal[1], goal[2])
self.obstacles = obstacles
self.nodes = [self.start]
def planning(self):
for i in range(MAX_ITER):
rand_node = self.generate_random_node()
nearest_node = self.find_nearest_node(rand_node)
new_node = self.steer(nearest_node, rand_node)
if self.check_collision(new_node):
self.nodes.append(new_node)
if self.calc_distance(new_node, self.goal) < GOAL_RADIUS:
self.goal.parent = new_node
return self.generate_path()
return None
def generate_random_node(self):
if np.random.rand() < 0.5:
x = np.random.uniform(-2.0, 2.0)
y = np.random.choice([-6.0, 6.0])
theta = np.random.choice([-np.pi/2, np.pi/2])
else:
x = np.random.choice([-2.0, 2.0])
y = np.random.uniform(-6.0, 6.0)
theta = np.random.choice([0, np.pi])
return Node(x, y, theta)
def find_nearest_node(self, rand_node):
nearest_node = self.nodes[0]
min_dist = self.calc_distance(rand_node, nearest_node)
for node in self.nodes:
dist = self.calc_distance(rand_node, node)
if dist < min_dist:
nearest_node = node
min_dist = dist
return nearest_node
def steer(self, nearest_node, rand_node):
delta_x = rand_node.x - nearest_node.x
delta_y = rand_node.y - nearest_node.y
delta_theta = np.arctan2(delta_y, delta_x)
delta_theta = self.normalize_angle(delta_theta - nearest_node.theta)
steer = np.clip(delta_theta, -MAX_STEER, MAX_STEER)
delta_dist = np.sqrt(delta_x**2 + delta_y**2)
delta_dist = np.clip(delta_dist, -MAX_SPEED, MAX_SPEED)
new_x = nearest_node.x + delta_dist * np.cos(nearest_node.theta)
new_y = nearest_node.y + delta_dist * np.sin(nearest_node.theta)
new_theta = nearest_node.theta + delta_dist / np.tan(steer)
new_node = Node(new_x, new_y, new_theta)
new_node.parent = nearest_node
return new_node
def check_collision(self, node):
for obs in self.obstacles:
if self.calc_distance(node, obs) < 1.0:
return False
return True
def generate_path(self):
path = []
node = self.goal
while node is not None:
path.append(node)
node = node.parent
return path[::-1]
def calc_distance(self, node1, node2):
dx = node1.x - node2.x
dy = node1.y - node2.y
return np.sqrt(dx**2 + dy**2)
def normalize_angle(self, angle):
while angle < -np.pi:
angle += 2*np.pi
while angle > np.pi:
angle -= 2*np.pi
return angle
def plot(self, path):
plt.figure(figsize=(8,8))
plt.xlim(-8.0, 8.0)
plt.ylim(-8.0, 8.0)
plt.plot([node.x for node in self.nodes], [node.y for node in self.nodes], 'bo', markersize=3)
plt.plot([obs[0] for obs in self.obstacles], [obs[1] for obs in self.obstacles], 'rs', markersize=6)
plt.plot([node.x for node in path], [node.y for node in path], 'r-', linewidth=2)
plt.plot(self.start.x, self.start.y, 'go', markersize=8)
plt.plot(self.goal.x, self.goal.y, 'yo', markersize=8)
plt.show()
# 定义场景参数
start = [-1.0, -7.0, np.pi/2]
goal = [1.0, 7.0, -np.pi/2]
obstacles = [[0.0, 0.0], [-2.0, 2.0], [2.0, 2.0], [-2.0, -2.0], [2.0, -2.0]]
# 进行路径规划
rrt = RRT(start, goal, obstacles)
path = rrt.planning()
# 输出泊车轨迹和绘制泊车轨迹
if path is not None:
print("泊车轨迹长度:", len(path))
for node in path:
print(node.x, node.y, node.theta)
rrt.plot(path)
else:
print("无法找到合适的泊车轨迹!")
```
在上述代码中,我们定义了一个Node类来表示状态,包括车辆的位置和方向。然后,我们定义了一个RRT类来实现RRT算法,包括搜索空间、运动模型、随机采样、碰撞检测、路径回溯等操作。最后,我们利用RRT算法搜索泊车路径,并绘制泊车轨迹。
需要注意的是,上述代码只是一个简单的示例,实际应用中需要根据具体场景进行调整和优化。
阅读全文