帮我写一下matlab的RRT算法
时间: 2023-11-03 16:09:39 浏览: 63
RRT算法_MATLAB
RRT(Rapidly-exploring Random Trees,快速扩展随机树)是一种基于树形结构的路径规划算法,用于解决机器人或其他移动体在复杂环境中的路径规划问题。下面是一个简单的 MATLAB 实现。
首先,定义一个空树,将初始位置作为根节点,并将其添加到树中:
```matlab
tree = struct('parent', [], 'position', []);
tree(1).parent = 0;
tree(1).position = [x_start, y_start];
```
接着,定义一个目标位置和最大迭代次数:
```matlab
x_goal = 10;
y_goal = 10;
max_iter = 1000;
```
然后,对于每一次迭代,生成一个随机位置,并找到树中最近的节点:
```matlab
for i = 2:max_iter
q_rand = [rand()*(x_max-x_min)+x_min, rand()*(y_max-y_min)+y_min];
[~, q_near] = min(pdist2([tree.position], q_rand), [], 2);
```
计算从最近节点到随机位置的方向和距离,并将其加入到树中:
```matlab
q_near = q_near(1);
q_new = steer(q_rand, tree(q_near).position, delta);
if check_collision(tree(q_near).position, q_new, obstacles) == 0
tree(end+1).parent = q_near;
tree(end).position = q_new;
end
```
检查新节点是否接近目标位置,并在找到一条通向目标的路径时返回:
```matlab
if pdist2(q_new, [x_goal, y_goal]) < goal_radius
q_goal = length(tree);
if check_collision(q_new, [x_goal, y_goal], obstacles) == 0
tree(end+1).parent = q_goal;
tree(end).position = [x_goal, y_goal];
path = find_path(tree);
return
end
end
end
```
最后,定义一个函数来沿着树的路径从目标节点向根节点回溯,生成一条从起始位置到目标位置的路径:
```matlab
function path = find_path(tree)
q_end = length(tree);
path = q_end;
while path(1) ~= 1
path = [tree(path(1)).parent, path];
end
end
```
完整代码如下:
```matlab
function path = RRT(x_start, y_start, x_goal, y_goal, obstacles, x_min, x_max, y_min, y_max, delta, goal_radius, max_iter)
tree = struct('parent', [], 'position', []);
tree(1).parent = 0;
tree(1).position = [x_start, y_start];
for i = 2:max_iter
q_rand = [rand()*(x_max-x_min)+x_min, rand()*(y_max-y_min)+y_min];
[~, q_near] = min(pdist2([tree.position], q_rand), [], 2);
q_near = q_near(1);
q_new = steer(q_rand, tree(q_near).position, delta);
if check_collision(tree(q_near).position, q_new, obstacles) == 0
tree(end+1).parent = q_near;
tree(end).position = q_new;
end
if pdist2(q_new, [x_goal, y_goal]) < goal_radius
q_goal = length(tree);
if check_collision(q_new, [x_goal, y_goal], obstacles) == 0
tree(end+1).parent = q_goal;
tree(end).position = [x_goal, y_goal];
path = find_path(tree);
return
end
end
end
function q_new = steer(q_rand, q_near, delta)
if pdist2(q_rand, q_near) < delta
q_new = q_rand;
else
q_new = q_near + delta * (q_rand - q_near) / pdist2(q_rand, q_near);
end
end
function collision = check_collision(q1, q2, obstacles)
collision = 0;
for i = 1:size(obstacles, 1)
if norm(q2 - q1) > 0.01
t = ((obstacles(i, 1)-q1(1))*(q2(1)-q1(1)) + (obstacles(i, 2)-q1(2))*(q2(2)-q1(2))) / norm(q2 - q1)^2;
proj = q1 + t * (q2 - q1);
if t >= 0 && t <= 1 && norm(proj - [obstacles(i, 1), obstacles(i, 2)]) < obstacles(i, 3)
collision = 1;
return
end
end
end
end
function path = find_path(tree)
q_end = length(tree);
path = q_end;
while path(1) ~= 1
path = [tree(path(1)).parent, path];
end
end
end
```
注意,这只是一种基本的 RRT 实现,可能需要根据具体问题进行调整和优化。
阅读全文