model = Basic_CNN_Model() loss_object = tf.keras.losses.SparseCategoricalCrossentropy() # 因为是softmax输出,因此无需指定from_logits=True optimizer = tf.keras.optimizers.Adam()

时间: 2024-03-08 07:45:38 浏览: 258
这段代码是用 TensorFlow 定义了一个基本的卷积神经网络模型,同时定义了损失函数和优化器。具体来说,代码中的 Basic_CNN_Model() 是一个函数或类,用于定义卷积神经网络的结构,loss_object 是损失函数,这里使用了 SparseCategoricalCrossentropy(),optimizer 是优化器,这里使用了 Adam()。SparseCategoricalCrossentropy() 适用于多分类问题,且标签是整数形式的情况,Adam() 是一种常用的优化器,可根据训练过程中的梯度自适应地调整学习率。
相关问题

# 实例化模型 model = vgg("vgg16", 401, 512, 10) model.summary() # using keras low level api for training loss_object = tf.keras.losses.CategoricalCrossentropy(from_logits=False) optimizer = tf.keras.optimizers.Adam(learning_rate=0.0001) train_loss = tf.keras.metrics.Mean(name='train_loss') train_accuracy = tf.keras.metrics.CategoricalAccuracy(name='train_accuracy') test_loss = tf.keras.metrics.Mean(name='test_loss') test_accuracy = tf.keras.metrics.CategoricalAccuracy(name='test_accuracy')

这段代码看起来是在使用 TensorFlow 2.0+ 的 Keras 高级 API 实现 VGG-16 模型的训练。使用的优化器是 Adam,学习率为 0.0001。同时,还定义了训练和测试过程中的损失函数和准确率的度量指标。训练时使用的是分类交叉熵损失函数,准确率指标使用的是分类准确率。测试时同样使用这两个指标。

tf.keras.losses.sparsecategoricalcrossentropy

这是一个用来计算稀疏分类交叉熵损失的TensorFlow函数。`tf.keras.losses.sparsecategoricalcrossentropy` 是 TensorFlow 的一个损失函数,用于计算稀疏分类交叉熵损失。它适用于标签是稀疏矩阵或整数的多类分类问题。相对于 `categorical_crossentropy`,该函数不要求标签进行独热编码,而是可以直接使用整数标签。 具体来说,该函数计算的是标签与预测值之间的交叉熵损失。假设有 $N$ 个样本,$C$ 个类别,其中第 $i$ 个样本的真实标签为 $y_i$,预测标签为 $\hat{y}_i$,则该函数的计算公式为: $$ \text{loss} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{C} \text{y}_{\text{i,j}} \log(\hat{\text{y}}_{\text{i,j}}) $$ 其中 $\text{y}_{\text{i,j}}$ 是一个指示函数,当真实标签为 $j$ 时为 $1$,否则为 $0$。 可以使用该函数作为 Keras 模型的损失函数,例如: ```python import tensorflow as tf model = tf.keras.models.Sequential([ tf.keras.layers.Dense(64, activation='relu'), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) ``` 在训练模型时,将会使用 `sparse_categorical_crossentropy` 作为损失函数进行优化。
阅读全文

相关推荐

import tensorflow as tf from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPool2D, Dropoutfrom tensorflow.keras import Model​# 在GPU上运算时,因为cuDNN库本身也有自己的随机数生成器,所以即使tf设置了seed,也不会每次得到相同的结果tf.random.set_seed(100)​mnist = tf.keras.datasets.mnist(X_train, y_train), (X_test, y_test) = mnist.load_data()X_train, X_test = X_train/255.0, X_test/255.0​# 将特征数据集从(N,32,32)转变成(N,32,32,1),因为Conv2D需要(NHWC)四阶张量结构X_train = X_train[..., tf.newaxis]    X_test = X_test[..., tf.newaxis]​batch_size = 64# 手动生成mini_batch数据集train_ds = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(10000).batch(batch_size)test_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test)).batch(batch_size)​class Deep_CNN_Model(Model):    def __init__(self):        super(Deep_CNN_Model, self).__init__()        self.conv1 = Conv2D(32, 5, activation='relu')        self.pool1 = MaxPool2D()        self.conv2 = Conv2D(64, 5, activation='relu')        self.pool2 = MaxPool2D()        self.flatten = Flatten()        self.d1 = Dense(128, activation='relu')        self.dropout = Dropout(0.2)        self.d2 = Dense(10, activation='softmax')        def call(self, X):    # 无需在此处增加training参数状态。只需要在调用Model.call时,传递training参数即可        X = self.conv1(X)        X = self.pool1(X)        X = self.conv2(X)        X = self.pool2(X)        X = self.flatten(X)        X = self.d1(X)        X = self.dropout(X)   # 无需在此处设置training状态。只需要在调用Model.call时,传递training参数即可        return self.d2(X)​model = Deep_CNN_Model()loss_object = tf.keras.losses.SparseCategoricalCrossentropy()optimizer = tf.keras.optimizers.Adam()​train_loss = tf.keras.metrics.Mean(name='train_loss')train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')test_loss = tf.keras.metrics.Mean(name='test_loss')test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')​# TODO:定义单批次的训练和预测操作@tf.functiondef train_step(images, labels):       ......    @tf.functiondef test_step(images, labels):       ......    # TODO:执行完整的训练过程EPOCHS = 10for epoch in range(EPOCHS)补全代码

def network_model(inputs,num_pitch,weights_file=None):#输入,音符的数量,训练后的参数文件 #测试时要指定weights_file #建立模子 model=tf.keras.Sequential() #第一层 model.add(tf.keras.layers.LSTM( 512,#LSTM层神经元的数目是512,也是LSTM层输出的维度 input_shape=(inputs.shape[1],inputs.shape[2]),#输入的形状,对于第一个LSTM必须设置 return_sequences=True#返回控制类型,此时是返回所有的输出序列 #True表示返回所有的输出序列 #False表示返回输出序列的最后一个输出 #在堆叠的LSTM层时必须设置,最后一层LSTM不用设置,默认值为False )) #第二层和第三层 model.add(tf.keras.layers.Dropout(0.75))#丢弃30%神经元,防止过拟合 model.add(tf.keras.layers.LSTM(512,return_sequences=True)) model.add(tf.keras.layers.Dropout(0.75))#丢弃30%神经元,防止过拟合 model.add(tf.keras.layers.LSTM(512))#千万不要丢括号!!!! #全连接层 model.add(tf.keras.layers.Dense(256))#256个神经元的全连接层 model.add(tf.keras.layers.Dropout(0.75)) model.add(tf.keras.layers.Dense(num_pitch))#输出的数目等于所有不重复的音调数 #激活层 model.add(tf.keras.layers.Activation('softmax'))#Softmax激活函数求概率 #配置神经网络模型 model.compile(loss='categorical_crossentropy',optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.0004)) #选择的损失函数是交叉熵,用来计算误差。使用对于RNN来说比较优秀的优化器-RMSProp #优化器如果使用字符串的话会用默认参数导致效果不好 return model

解释以下这段代码:import tensorflow as tf gpus =tf.config.experimental.list_physical_devices(device_type='GPU') tf.config.experimental.set_virtual_device_configuration(gpus[0],[tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)]) #import scipy.io as sio import pickle import os,random import matplotlib.pyplot as plt #import scipy.stats from tensorflow import losses from tensorflow.keras import Model from tensorflow.keras import layers import matplotlib.pyplot as plt import tensorflow as tf import numpy as np #import scipy.io as sio #import scipy.stats import math import os import pdb from tensorflow import losses from model import ResNet18 from re_dataset_real import train_image1,train_label1,test_image1,test_label1,val_image1,val_label1 from re_dataset_imag import train_image2,train_label2,test_image2,test_label2,val_image2,val_label2 def phsical_loss(y_true, y_pred): y_true =tf.cast(y_true, y_pred.dtype) loss_real=tf.keras.losses.MSE(y_true[0],y_pred[0]) loss_img= tf.keras.losses.MSE(y_true[1],y_pred[1]) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_amp=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_real+loss_img+loss_amp#两个子模型各加一个完整约束 def angle_loss(y_true, y_pred): y_true = tf.cast(y_true, y_pred.dtype) img_ture=tf.atan2(y_true[1],y_true[0]) img_pred=tf.atan2(y_pred[1],y_pred[0]) return tf.keras.losses.MAE(img_ture,img_pred) def amp_loss(y_true, y_pred): y_true = tf.cast(y_true, y_pred.dtype) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_phsical=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_phsical model_in=tf.keras.Input((16,16,1)) model_real_out=ResNet18([2,2,2,2])(model_in) model_img_out=ResNet18([2,2,2,2])(model_in) model_all=tf.keras.Model(model_in,[model_real_out,model_img_out]) model_all.compile(loss=phsical_loss, optimizer=tf.keras.optimizers.Adam(tf.keras.optimizers.schedules.InverseTimeDecay( 0.001, decay_steps=250*25, decay_rate=1, staircase=False)), metrics=['mse']) checkpoint_save_path= "C:\\Users\\Root\\Desktop\\bysj\\model_all.ckpt" if os.path.exists(checkpoint_save_path + '.index'): print('------------------load model all---------------------') model_all.load_weights(checkpoint_save_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path, save_weights_only=True,save_best_only=True)

最新推荐

recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

在TensorFlow 2.0中,`tf.keras.Model.load_weights()` 是一个非常有用的函数,用于加载预先训练好的权重到模型中,以便继续训练或进行预测。然而,在实际操作中,可能会遇到一些报错,本文将针对这些问题提供解决...
recommend-type

在keras中model.fit_generator()和model.fit()的区别说明

在Keras库中,`model.fit()`和`model.fit_generator()`是两个用于训练深度学习模型的关键函数。它们都用于更新模型的权重以最小化损失函数,但针对不同类型的输入数据和场景有不同的适用性。 首先,`model.fit()`是...
recommend-type

Keras load_model 导入错误的解决方式

在使用Keras库进行深度学习模型开发时,`load_model`是用于加载预训练模型的重要函数。然而,有时在尝试加载模型时可能会遇到导入错误,这通常与依赖库的安装有关。本文将深入探讨如何解决Keras `load_model`导入...
recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

在深度学习领域,Keras是一个非常流行的高级神经网络API,它构建在TensorFlow等后端之上,简化了模型构建和训练的过程。然而,在实践中,我们可能会遇到一些问题,例如在训练过程中遇到`val_categorical_accuracy: 0...
recommend-type

使用Keras 实现查看model weights .h5 文件的内容

`.h5` 文件是一种用于存储数据的二进制格式,尤其适合保存 Keras 模型,因为它们包含了模型结构和权重。Keras 提供了 `get_weights()` 函数来获取模型中每个层的权重。例如: ```python for layer in model.layers:...
recommend-type

Windows平台下的Fastboot工具使用指南

资源摘要信息:"Windows Fastboot.zip是一个包含了Windows环境下使用的Fastboot工具的压缩文件。Fastboot是一种在Android设备上使用的诊断和工程工具,它允许用户通过USB连接在设备的bootloader模式下与设备通信,从而可以对设备进行刷机、解锁bootloader、安装恢复模式等多种操作。该工具是Android开发者和高级用户在进行Android设备维护或开发时不可或缺的工具之一。" 知识点详细说明: 1. Fastboot工具定义: Fastboot是一种与Android设备进行交互的命令行工具,通常在设备的bootloader模式下使用,这个模式允许用户直接通过USB向设备传输镜像文件以及其他重要的设备分区信息。它支持多种操作,如刷写分区、读取设备信息、擦除分区等。 2. 使用环境: Fastboot工具原本是Google为Android Open Source Project(AOSP)提供的一个组成部分,因此它通常在Linux或Mac环境下更为原生。但由于Windows系统的普及性,许多开发者和用户需要在Windows环境下操作,因此存在专门为Windows系统定制的Fastboot版本。 3. Fastboot工具的获取与安装: 用户可以通过下载Android SDK平台工具(Platform-Tools)的方式获取Fastboot工具,这是Google官方提供的一个包含了Fastboot、ADB(Android Debug Bridge)等多种工具的集合包。安装时只需要解压到任意目录下,然后将该目录添加到系统环境变量Path中,便可以在任何位置使用Fastboot命令。 4. Fastboot的使用: 要使用Fastboot工具,用户首先需要确保设备已经进入bootloader模式。进入该模式的方法因设备而异,通常是通过组合特定的按键或者使用特定的命令来实现。之后,用户通过运行命令提示符或PowerShell来输入Fastboot命令与设备进行交互。常见的命令包括: - fastboot devices:列出连接的设备。 - fastboot flash [partition] [filename]:将文件刷写到指定分区。 - fastboot getvar [variable]:获取指定变量的值。 - fastboot reboot:重启设备。 - fastboot unlock:解锁bootloader,使得设备能够刷写非官方ROM。 5. Fastboot工具的应用场景: - 设备的系统更新或刷机。 - 刷入自定义恢复(如TWRP)。 - 在开发阶段对设备进行调试。 - 解锁设备的bootloader,以获取更多的自定义权限。 - 修复设备,例如清除用户数据分区或刷写新的boot分区。 - 加入特定的内核或修改系统分区。 6. 注意事项: 在使用Fastboot工具时需要格外小心,错误的操作可能会导致设备变砖或丢失重要数据。务必保证操作前已备份重要数据,并确保下载和刷入的固件是针对相应设备的正确版本。此外,不同的设备可能需要特定的驱动程序支持,因此在使用Fastboot之前还需要安装相应的USB驱动。 7. 压缩包文件说明: 资源中提到的"windows-fastboot.zip"是一个压缩文件,解压后应当包含一个或多个可执行文件、库文件等,这些文件合起来组成了Fastboot工具的Windows版本。解压后,用户应当参考解压后的文档或说明文件来进行安装和配置,以便能够正确地使用该工具。 总结而言,Fastboot作为一个功能强大的工具,它为Android设备的开发者和高级用户提供了一个界面简洁但功能全面的操作平台,以实现对设备深层次的控制。然而,它的使用要求用户具备一定的技术知识和经验,否则不当操作可能导致设备损坏。因此,使用Fastboot时应当谨慎并确保自己了解每个命令的具体含义和后果。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

DLMS规约深度剖析:从基础到电力通信标准的全面掌握

![DLMS规约基础介绍](https://afteracademy.com/images/what-is-data-model-in-dbms-and-what-are-its-types-hierarchical-model-48add64778fd4b8f.jpg) # 摘要 DLMS/COSEM是一种广泛应用于智能电网和电力计量领域的通信协议。本文首先介绍了DLMS规约的基础概念、起源以及核心技术原理,包括协议架构、数据模型、通信过程、数据封装与传输机制。随后,文章探讨了DLMS规约在电力通信中的实际应用,如智能电表和电网自动化系统的数据通信,并分析了DLMS规约的测试与验证方法。文
recommend-type

修改代码,使其正确运行

要使提供的代码能够正确运行,需要解决以下几个关键点: 1. **输入处理**:确保从控制台读取的文法规则和待解析字符串格式正确。 2. **FIRST集和FOLLOW集计算**:确保FIRST集和FOLLOW集的计算逻辑正确无误。 3. **预测分析表构建**:确保预测分析表的构建逻辑正确,并且能够处理所有可能的情况。 4. **LL(1)分析器**:确保LL(1)分析器能够正确解析输入字符串并输出解析过程。 以下是经过修改后的完整代码: ```java package com.example.demo10; import java.util.*; public class Main
recommend-type

Python机器学习基础入门与项目实践

资源摘要信息:"机器学习概述与Python在机器学习中的应用" 机器学习是人工智能的一个分支,它让计算机能够通过大量的数据学习来自动寻找规律,并据此进行预测或决策。机器学习的核心是建立一个能够从数据中学习的模型,该模型能够在未知数据上做出准确预测。这一过程通常涉及到数据的预处理、特征选择、模型训练、验证、测试和部署。 机器学习方法主要可以分为监督学习、无监督学习、半监督学习和强化学习。 监督学习涉及标记好的训练数据,其目的是让模型学会从输入到输出的映射。在这个过程中,模型学习根据输入数据推断出正确的输出值。常见的监督学习算法包括线性回归、逻辑回归、支持向量机(SVM)、决策树、随机森林和神经网络等。 无监督学习则是处理未标记的数据,其目的是探索数据中的结构。无监督学习算法试图找到数据中的隐藏模式或内在结构。常见的无监督学习算法包括聚类、主成分分析(PCA)、关联规则学习等。 半监督学习和强化学习则是介于监督学习和无监督学习之间的方法。半监督学习使用大量未标记的数据和少量标记数据进行学习,而强化学习则是通过与环境的交互来学习如何做出决策。 Python作为一门高级编程语言,在机器学习领域中扮演了非常重要的角色。Python之所以受到机器学习研究者和从业者的青睐,主要是因为其丰富的库和框架、简洁易读的语法以及强大的社区支持。 在Python的机器学习生态系统中,有几个非常重要的库: 1. NumPy:提供高性能的多维数组对象,以及处理数组的工具。 2. Pandas:一个强大的数据分析和操作工具库,提供DataFrame等数据结构,能够方便地进行数据清洗和预处理。 3. Matplotlib:一个用于创建静态、动态和交互式可视化的库,常用于生成图表和数据可视化。 4. Scikit-learn:一个简单且高效的工具,用于数据挖掘和数据分析,支持多种分类、回归、聚类算法等。 5. TensorFlow:由Google开发的开源机器学习库,适用于大规模的数值计算,尤其擅长于构建和训练深度学习模型。 6. Keras:一个高层神经网络API,能够使用TensorFlow、CNTK或Theano作为其后端进行计算。 机器学习的典型工作流程包括数据收集、数据预处理、特征工程、模型选择、训练、评估和部署。在这一流程中,Python可以贯穿始终,从数据采集到模型部署,Python都能提供强大的支持。 由于机器学习的复杂性,一个成功的机器学习项目往往需要跨学科的知识,包括统计学、数学、计算机科学、数据分析等领域。因此,掌握Python及其相关库的使用只是机器学习工作的一部分,还需要有扎实的理论基础和实践经验。 总结来说,机器学习是一个涉及数据挖掘、统计分析、算法优化等多个领域的综合性科学。Python由于其简洁的语法、丰富的库支持和强大的社区力量,成为了进行机器学习研究和应用开发的首选语言。随着技术的不断进步和算法的持续优化,机器学习的应用领域也在不断扩大,从早期的搜索引擎、推荐系统到现代的自动驾驶、医疗诊断等领域都有着广泛的应用。