是的,我想知道我要对他们进行resnet进行分类然后tsne可视化的完整代码
时间: 2023-12-16 18:02:56 浏览: 170
resnet图像分类与可视化.zip
5星 · 资源好评率100%
好的,以下是基于ResNet进行图像分类并使用t-SNE进行可视化的Python代码,供参考:
```python
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
import numpy as np
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
# 定义ResNet网络结构
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
out = self.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self.make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self.make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self.make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self.make_layer(block, 512, num_blocks[3], stride=2)
self.avg_pool = nn.AdaptiveAvgPool2d((1,1))
self.fc = nn.Linear(512, num_classes)
def make_layer(self, block, out_channels, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels
return nn.Sequential(*layers)
def forward(self, x):
out = self.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
# 加载数据集
train_dataset = datasets.CIFAR10(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.CIFAR10(root='./data', train=False, transform=transforms.ToTensor())
# 定义超参数
batch_size = 100
learning_rate = 0.01
num_epochs = 10
# 加载数据集
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
# 实例化ResNet网络模型
model = ResNet(ResidualBlock, [2, 2, 2, 2]).cuda()
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9, weight_decay=5e-4)
# 训练模型
for epoch in range(num_epochs):
train_loss = 0.0
train_acc = 0.0
model.train()
for i, (images, labels) in enumerate(train_loader):
images = images.cuda()
labels = labels.cuda()
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() * images.size(0)
_, pred = torch.max(outputs, 1)
train_acc += (pred == labels).sum().item()
train_loss = train_loss / len(train_loader.dataset)
train_acc = train_acc / len(train_loader.dataset)
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}'.format(epoch+1, num_epochs, train_loss, train_acc))
# 测试模型
model.eval()
with torch.no_grad():
test_loss = 0.0
test_acc = 0.0
for images, labels in test_loader:
images = images.cuda()
labels = labels.cuda()
outputs = model(images)
loss = criterion(outputs, labels)
test_loss += loss.item() * images.size(0)
_, pred = torch.max(outputs, 1)
test_acc += (pred == labels).sum().item()
test_loss = test_loss / len(test_loader.dataset)
test_acc = test_acc / len(test_loader.dataset)
print('Test Loss: {:.4f}, Test Acc: {:.4f}'.format(test_loss, test_acc))
# 使用t-SNE进行可视化
features = []
labels = []
model.eval()
with torch.no_grad():
for images, batch_labels in test_loader:
images = images.cuda()
batch_features = model(images).cpu().numpy()
features.extend(batch_features)
labels.extend(batch_labels.cpu().numpy())
features = np.array(features)
labels = np.array(labels)
tsne = TSNE(n_components=2, perplexity=30, learning_rate=200, n_iter=1000, random_state=0)
tsne_features = tsne.fit_transform(features)
# 可视化
plt.figure(figsize=(10, 10))
plt.scatter(tsne_features[:, 0], tsne_features[:, 1], c=labels, cmap=plt.cm.get_cmap("jet", 10))
plt.colorbar(ticks=range(10))
plt.clim(-0.5, 9.5)
plt.show()
```
这段代码中使用了PyTorch实现的ResNet网络进行图像分类,并使用t-SNE算法进行特征可视化。你需要将代码保存为.py文件,并确保已经安装了必要的Python库(如PyTorch、NumPy、scikit-learn等)。
阅读全文