QPSO-XGBOOST多分类python
时间: 2023-07-24 17:14:48 浏览: 179
好的,QPSO-XGBoost是一种结合了量子粒子群优化算法(QPSO)和XGBoost算法的分类方法。它可以用于解决多分类问题。以下是一个使用Python实现QPSO-XGBoost多分类的示例代码:
```python
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import xgboost as xgb
from qpsopy import QPSO
# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义QPSO-XGBoost分类器
class QPSOXGB:
def __init__(self, n_class, lr, max_depth, n_estimators, gamma, subsample, colsample_bytree, reg_alpha, reg_lambda):
self.n_class = n_class
self.lr = lr
self.max_depth = max_depth
self.n_estimators = n_estimators
self.gamma = gamma
self.subsample = subsample
self.colsample_bytree = colsample_bytree
self.reg_alpha = reg_alpha
self.reg_lambda = reg_lambda
def fit(self, X, y):
dtrain = xgb.DMatrix(X, label=y)
params = {
'objective': 'multi:softmax',
'num_class': self.n_class,
'learning_rate': self.lr,
'max_depth': self.max_depth,
'n_estimators': self.n_estimators,
'gamma': self.gamma,
'subsample': self.subsample,
'colsample_bytree': self.colsample_bytree,
'reg_alpha': self.reg_alpha,
'reg_lambda': self.reg_lambda
}
bst = xgb.train(params, dtrain)
self.bst = bst
def predict(self, X):
dtest = xgb.DMatrix(X)
pred = self.bst.predict(dtest)
return pred
# 定义适应度函数
def fitness(QPSOXGB, X_train, y_train):
QPSOXGB.fit(X_train, y_train)
y_pred = QPSOXGB.predict(X_train)
fitness_val = np.sum(y_pred == y_train)/len(y_train)
return fitness_val
# 定义搜索范围
search_range = {
'lr': (0.001, 0.1),
'max_depth': (3, 10),
'n_estimators': (50, 300),
'gamma': (0, 1),
'subsample': (0.5, 1),
'colsample_bytree': (0.5, 1),
'reg_alpha': (0, 10),
'reg_lambda': (0, 10)
}
# 定义QPSO算法
q = QPSO(
n_particles=20,
n_iterations=50,
fitness_func=fitness,
QPSOXGB=QPSOXGB,
search_range=search_range,
X_train=X_train,
y_train=y_train
)
# 运行QPSO算法
q.run()
# 在测试集上评估模型
y_pred = q.QPSOXGB.predict(X_test)
accuracy = np.sum(y_pred == y_test)/len(y_test)
print('Test accuracy:', accuracy)
```
在这个例子中,我们使用sklearn中的鸢尾花数据集,将其分割为训练集和测试集,并定义了一个QPSO-XGBoost分类器。然后,我们定义了适应度函数,它将训练QPSO-XGBoost分类器并返回其在训练集上的准确度。我们还定义了搜索范围和QPSO算法,最后在测试集上评估了模型的准确度。
阅读全文