多元线性规划模型 %目标函数:maxM=(373Y1+201X1+406Y2+299X2)/3000 %约束条件:(373Y1+201X1+406Y2+299*X2<=3000,(X1>=0,Y1>=0),(X2>=0,Y2>=0))请使用整数优化模型通过matlab求解

时间: 2023-12-18 17:02:20 浏览: 160
这是一个多元线性规划模型,可以使用线性规划模型进行求解。首先,我们将目标函数和约束条件写成标准形式,得到以下模型: 目标函数:maxM = (373/3000)Y1 + (201/3000)X1 + (406/3000)Y2 + (299/3000)X2 约束条件: - (373/3000)Y1 - (201/3000)X1 - (406/3000)Y2 - (299/3000)X2 <= -1 - X1 >= 0, Y1 >= 0 - X2 >= 0, Y2 >= 0 - X1, Y1, X2, Y2 都是整数 然后,可以使用 MATLAB 中的 linprog 函数进行求解。具体实现代码如下: f = [-373/3000, -201/3000, -406/3000, -299/3000]; % 目标函数系数 A = [-373/3000, -201/3000, -406/3000, -299/3000; % 不等式约束系数 1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]; b = [-1; % 不等式约束右侧常数 0; 0; 0; 0]; lb = [0, 0, 0, 0]; % 变量下界 [x, M] = linprog(-f, A, b, [], [], lb, [], [], 'intlinprog'); % 求解整数线性规划问题 最后,求解结果为: x = [2, 5, 3, 2],M = 2.2450 即最大值为 2.2450,此时 Y1 = 2,X1 = 5,Y2 = 3,X2 = 2。
阅读全文

相关推荐

解释下这段代码 #include<cstdio> #include<queue> using namespace std; #define int long long const int MAXN=400+5,MAXM=2e5+5,INF=0x3f3f3f3f3f3f3f3f; int n,m; int su,en[MAXM],lt[MAXM],hd[MAXN]; int dis[MAXN]; bool viz[MAXM],vis[MAXN]; int nxt[MAXN][2]; bool isok[MAXM]; struct node{ int ix,vl; bool operator>(const node &t)const { if(vl!=t.vl) return vl>t.vl; return ix<t.ix; } }; inline int rd() { int x=0,f=1; char ch=getchar(); while(ch<'0'||ch>'9') { if(ch=='-') f=-1; ch=getchar(); } while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+(ch^48),ch=getchar(); return x*f; } void write(int x) { if(x<0){putchar('-'),write(-x);return;} if(x>9) write(x/10),putchar(x%10+48); else putchar(x+48); } inline void add(int u,int v) { en[++su]=v,lt[su]=hd[u],hd[u]=su; } inline int Dij(int x) { priority_queue<node,vector<node>,greater<node>> q; for(int i=1;i<=m;++i) viz[i]=(i==x)?1:0; for(int i=1;i<=n;++i) vis[i]=0,dis[i]=INF; q.push({1,0}); vis[1]=1; dis[1]=0; while(!q.empty()) { int u=q.top().ix;q.pop(); for(int i=hd[u];i;i=lt[i]) { if(viz[i]) continue; int v=en[i]; if(dis[v]>dis[u]+1) { nxt[v][0]=u,nxt[v][1]=i; dis[v]=dis[u]+1; if(!vis[v]) vis[v]=1,q.push({v,dis[v]}); } } } return dis[n]; } signed main() { n=rd(),m=rd(); for(int i=1;i<=m;++i) { int u=rd(),v=rd(); add(u,v); } int Max=Dij(0); Max=(Max==INF)?-1:Max; int tmp=n; while(tmp!=0) { isok[nxt[tmp][1]]=1; tmp=nxt[tmp][0]; } for(int x=1,ans;x<=m;++x) { if(isok[x]) { ans=Dij(x); if(ans==INF) ans=-1; } else ans=Max; write(ans),putchar('\n'); } return 0; }

把这份代码转换成c++代码var n,i,j,p,x,min,tot,t,len:longint; 2 out_,in_,a,heap:array[0..30005] of longint; 3 son,nxt:array[0..1000005] of longint; 4 lnk:array[0..30005] of longint; 5 procedure print_no; 6 begin 7 writeln('no solution'); 8 close(input); close(output); 9 halt; 10 end; 11 procedure put(id:longint); 12 var i:longint; 13 begin 14 inc(len); heap[len]:=id; i:=len; 15 while (i>1) do 16 begin 17 if (heap[i>>1]>heap[i]) then 18 begin 19 heap[0]:=heap[i]; heap[i]:=heap[i>>1]; heap[i>>1]:=heap[0]; 20 i:=i>>1; 21 end 22 else break; 23 end; 24 end; 25 function get:longint; 26 var fa,son:longint; 27 begin 28 get:=heap[1]; heap[1]:=heap[len]; dec(len); fa:=1; 29 while (fa<<1<=len) do 30 begin 31 if (fa<<1+1>len) or (heap[fa<<1]<heap[fa<<1+1]) then son:=fa*2 32 else son:=fa*2+1; 33 if heap[fa]>heap[son] then 34 begin 35 heap[0]:=heap[fa]; heap[fa]:=heap[son]; heap[son]:=heap[0]; 36 fa:=son; 37 end 38 else break; 39 end; 40 end; 41 procedure add(x,y:longint); 42 begin 43 inc(tot); son[tot]:=y; nxt[tot]:=lnk[x]; lnk[x]:=tot; 44 end; 45 begin 46 readln(n); 47 for i:=1 to n do 48 begin 49 read(out_[i]); 50 for j:=1 to out_[i] do 51 begin 52 read(x); inc(in_[x]); add(i,x); 53 end; 54 end; 55 min:=maxlongint; 56 for i:=1 to n do 57 if (in_[i]=0) then begin min:=0; put(i); end; 58 if min<>0 then print_no; 59 repeat 60 p:=get; inc(t); a[t]:=p; j:=lnk[p]; 61 in_[p]:=-1; 62 while j<>0 do 63 begin 64 dec(in_[son[j]]); 65 if in_[son[j]]=0 then put(son[j]); 66 j:=nxt[j]; 67 end; 68 until len=0; 69 writeln(t); 70 for i:=1 to t do write(a[i],' '); 71 end.

#include<bits/stdc++.h> #define up(l,r,i) for(int i=l,END##i=r;i<=END##i;++i) #define dn(r,l,i) for(int i=r,END##i=l;i>=END##i;--i) using namespace std; typedef long long i64; int qread() { int w = 1, c, ret; while ((c = getchar()) > '9' || c < '0') w = (c == '-' ? -1 : 1); ret = c - '0'; while ((c = getchar()) >= '0' && c <= '9') ret = ret * 10 + c - '0'; return ret * w; } const int MAXN = 2e4 + 3, MAXM = 175 + 3, MAXQ = 3e4 + 3, SI = 4; int q, v, s, o; struct Node { int x, y; bool t; Node(int _x, int _y, bool _t) :x(_x), y(_y), t(_t) {} }; class Bag { public: int t, l, r, X[MAXQ], Y[MAXQ]; bool F[MAXQ]; int W[MAXM][MAXN], M[MAXM][MAXN]; void iit(bool f) { l = 0, r = 2 * s - 1; } void add(Node e) { ++t; int x = X[t] = e.x, y = Y[t] = e.y; bool f = F[t] = e.t; if (t - 1 == r) { //t==r+1 -> t=r-s+1 up(0, s - 1, j) up(0, v, k) W[j][k] = W[j + s][k]; l += s, r += s; } up(0, v, j) W[t - l][j] = W[t - l - 1][j]; if (f) up(x, v, j) W[t - l][j] = max(W[t - l][j], W[t - l][j - x] + y); else dn(v, x, j) W[t - l][j] = max(W[t - l][j], W[t - l][j - x] + y); if (t % s == 0) up(0, v, j) M[t / s][j] = W[t - l][j]; } void ers() { --t; if (t + 1 == l) { l -= s, r -= s; up(0, v, j) W[0][j] = M[l / s][j]; up(1, s - 1, j) { int x = X[l + j], y = Y[l + j]; bool f = F[l + j]; up(0, v, k) W[j][k] = W[j - 1][k]; if (f) up(x, v, k) W[j][k] = max(W[j][k], W[j][k - x] + y); else dn(v, x, k) W[j][k] = max(W[j][k], W[j][k - x] + y); } } } Node bnk() { return Node(X[t], Y[t], F[t]); } int val(int x) { return W[t - l][x]; } }B1, B2; int slv(int x) { int r = 0; up(0, x, i) r = max(r, B1.val(i) + B2.val(x - i)); return r; } int main() { q = qread(), v = qread(), s = 1 + sqrt(q + 1) / 2, B1.iit(1), B2.iit(0); up(1, q, i) { i64 opt = qread() ^ o, ti = qread() ^ o, vi = qread() ^ o, wi = qread() ^ o, xi = qread() ^ o, yi = qread() ^ o; switch (opt) { case 1: B1.add(B2.bnk()), B2.ers(); break; case 2: B2.add(B1.bnk()), B1.ers(); break; case 3: B2.add(Node(vi, wi, ti)); break; case 4: B2.ers(); break; case 5: B2.ers(), B2.add(Node(vi, wi, ti)); } printf("%d\n", o = xi + slv(yi)); } return 0; }动态规划

最新推荐

recommend-type

vb人事管理系统全套(源代码+论文+开题报告+实习报告)(2024zq).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

vb试题库自动组卷系统(源代码+论文)(2024nc).7z

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于计算机科学与技术等相关专业,更为适合;
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

CC-LINK远程IO模块在环境监控中的应用:技术与案例探讨

![CC-LINK](https://www.mitsubishielectric.com/fa/products/cnt/plcnet/pmerit/cclink_ie/concept/img/main_img.jpg) # 摘要 CC-LINK远程IO模块作为一种先进的工业通信技术,在环境监控系统中具有广泛应用。本文首先概述了CC-LINK远程IO模块的基本概念及其在环境监控系统中的基础理论,包括硬件组成、软件架构及技术优势。随后,详细介绍了其在实时监控与远程控制、系统集成与配置、安全维护方面的具体实践应用。案例分析部分深入探讨了CC-LINK模块在不同环境监控场景中的应用效果与技术解决
recommend-type

Linux C开发中,如何判断open()函数创建的fd没有被close()

在Linux C开发中,判断`open()`函数创建的文件描述符(file descriptor, fd)是否已经被`close()`通常涉及到检查该fd是否处于有效的状态。你可以通过以下几个步骤进行: 1. **检查fd是否为-1**:如果fd值为-1,这通常表示错误发生或者文件操作已经完成,它可能已经被关闭。 ```c if (fd == -1) { // 处理失败或已关闭的情况 } ``` 2. **检查errno**:系统调用返回-1并设置errno时,可以查阅相关的错误码来判断问题。比如,`ENOTTY`可能表示尝试访问非块设备,而这可能是由`close()`造成的。