Gated attention encoder
时间: 2023-10-11 14:10:05 浏览: 126
Gated attention encoder是一种神经网络结构,在自然语言处理任务中应用广泛。它主要由两部分组成:一个注意力机制和一个门控机制。注意力机制可以根据输入序列中每个位置的重要性对其进行加权,而门控机制可以控制每个位置的信息流量。这种结构可以有效地捕捉输入序列中的关键信息,从而提高模型的性能。
相关问题
The Inter-Edge Encoder first utilizes a dual graph convolutional network (DGC) to obtain new edge embeddings of the original graph G. Then the dimension of edge embeddings is transformed to 1 by MLP to obtain edge weights denoted by weight matrix E. Weight matrix E can be used to control the weights of the neighborhood nodes to the target node during neighborhood aggregation. By increasing the weights between intra-class nodes and reducing the weights between inter-class nodes, the consistency of intra-class nodes and the difference of inter-class nodes can be strengthened. Therefore, weight matrix E can play the role of gating. Weight matrix E can be named the gated attention (GA) matrix. 解释这句话
这段话是在介绍Inter-Edge Encoder(一种用于图像分类的深度学习模型)中的关键步骤。具体来说,该模型首先使用双图卷积网络(DGC)对原始图G进行处理,得到新的边嵌入(edge embeddings)。接着,使用多层感知机(MLP)将边嵌入的维度转换为1,得到边权重矩阵E。该矩阵可以用来控制邻域聚合(neighborhood aggregation)过程中目标节点和邻居节点之间的权重。通过增加类内节点之间的权重,减少类间节点之间的权重,可以增强类内节点的一致性和类间节点的差异性。因此,矩阵E可以起到门的作用,控制邻域节点的权重分配。矩阵E也可以被称为门控注意力(gated attention,GA)矩阵,因为它可以控制注意力的分配。总之,这段话是在说明矩阵E在Inter-Edge Encoder中的作用和意义。
GATED XATTN-DENSE
GATED XATTN-DENSE是Flamingo模型中的一个cross-attention层,用于桥接不同模态信息之间的交互。这个层的训练是Flamingo模型中唯一需要进行的训练步骤,而vision encoder和LM则不需要额外的训练。通过利用CV领域和NLP领域的已有成果,Flamingo的缝合方案充分利用了这些成果,从而在模型训练成本上具有明显的优势。\[1\]
#### 引用[.reference_title]
- *1* *2* [SEEChat](https://blog.csdn.net/qq_29788741/article/details/131388003)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
- *3* [360 人工智能研究院正式开源中文多模态对话模型 SEEChat](https://blog.csdn.net/csdnnews/article/details/131485747)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文