用mindspore搭建lenet5网络模型
时间: 2023-07-05 08:03:10 浏览: 117
MindSpore用户提升模型安全性和可信度的工具箱
好的,以下是使用MindSpore搭建LeNet-5网络模型的步骤:
1. 导入需要的库和模块:
```python
import mindspore.nn as nn
import mindspore.ops.operations as P
from mindspore.common.initializer import Normal
```
2. 定义LeNet-5网络模型:
```python
class LeNet5(nn.Cell):
def __init__(self, num_class=10, num_channel=1):
super(LeNet5, self).__init__()
self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
def construct(self, x):
x = self.max_pool2d(self.relu(self.conv1(x)))
x = self.max_pool2d(self.relu(self.conv2(x)))
x = x.reshape(x.shape[0], -1)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
```
3. 实例化网络模型:
```python
net = LeNet5(num_class=10, num_channel=1)
```
4. 定义损失函数和优化器:
```python
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.01, momentum=0.9)
```
5. 训练模型:
```python
from mindspore import Tensor
from mindspore import context
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
# 定义数据
train_dataset = # TODO: 定义训练数据集
test_dataset = # TODO: 定义测试数据集
# 定义超参数
epoch = 10
batch_size = 32
# 训练模型
net.set_train()
for i in range(epoch):
for data, label in train_dataset.create_dict_iterator():
data = Tensor(data)
label = Tensor(label)
loss = criterion(net(data), label)
loss.backward()
optimizer.step()
optimizer.clear_grad()
# 测试模型
net.set_eval()
total_correct = 0
total_num = 0
for data, label in test_dataset.create_dict_iterator():
data = Tensor(data)
label = Tensor(label)
output = net(data)
total_num += label.shape[0]
total_correct += (output.argmax(axis=1) == label).sum().asnumpy()
acc = total_correct / total_num
print(f"Epoch {i}: accuracy = {acc}")
net.set_train()
```
以上就是使用MindSpore搭建LeNet-5网络模型的步骤。需要注意的是,这里只是一个简单的示例,实际应用时还需要根据具体的任务进行调整。
阅读全文