def forward(self, x): # # b, 3, npoint, nsample # conv2d 3 -> 128 channels 1, 1 # b * npoint, c, nsample # permute reshape batch_size, _, N = x.size() # B, D, N x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x1 = self.sa1(x) x2 = self.sa2(x1) x3 = self.sa3(x2) x4 = self.sa4(x3) x = torch.cat((x1, x2, x3, x4), dim=1) return x
时间: 2024-02-05 10:03:45 浏览: 75
这段代码是 PointNet++ 的网络结构中的一部分,其中 PointNet++ 是一个用于点云处理的深度学习框架。具体来说,这段代码实现了一些卷积操作和点云采样,然后通过叠加多个自注意力层(Self-Attention Layer)和多尺度卷积(Multi-Scale Convolution)来提取点云的局部特征和全局特征,最后将这些特征串联在一起并返回。
相关问题
class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc1 = nn.Conv2d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): # print("x=", x) b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x)这是我注意力机制模块的代码,却在运行时报错提示: File "/root/autodl-tmp/project/tools/../lib/net/pointnet2_msg.py", line 91, in forward y = self.fc1(y) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 423, in forward return self._conv_forward(input, self.weight) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 419, in _conv_forward return F.conv2d(input, weight, self.bias, self.stride, RuntimeError: Expected 4-dimensional input for 4-dimensional weight [256, 1024, 1, 1], but got 3-dimensional input of size [16, 1, 1] instead
这个错误是由于你的输入张量 `x` 的维度不正确,期望是一个 4 维张量,但是实际上 `x` 是一个 3 维张量。可以看出,你的 `x` 的尺寸为 `[batch_size, channel, n]`,其中 `n` 表示序列的长度,并且你使用了全局平均池化层对 `n` 进行了降维。最终,`y` 的尺寸应该是 `[batch_size, channel // reduction, 1, 1]`。但是,在你使用 `self.fc1(y)` 进行卷积时,它期望 `y` 是一个 4 维张量,而实际上 `y` 是一个 3 维张量,所以会报错。
解决这个问题,你可以在 `forward` 函数中增加一个维度,将 `y` 变成一个 4 维张量。修改后的代码如下:
```
class SelfAttention(nn.Module):
def __init__(self, in_channels, reduction=4):
super(SelfAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc1 = nn.Conv2d(in_channels, in_channels // reduction, 1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(in_channels // reduction, in_channels, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
b, c, n = x.size()
y = self.avg_pool(x)
y = y.unsqueeze(-1).unsqueeze(-1) # 增加两个维度,变成 4 维张量
y = self.fc1(y)
y = self.relu(y)
y = self.fc2(y)
y = self.sigmoid(y)
return x * y.expand_as(x)
```
增加维度的操作使用 `unsqueeze` 函数,将 `y` 在最后两个维度上增加维度。这样就可以避免报错了。
class SelfAttention(nn.Module): def init(self, in_channels, reduction=4): super(SelfAttention, self).init() self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc1 = nn.Conv2d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): # print("x=", x) b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x)这是我的自注意力模块,却提示我: File "/root/autodl-tmp/project/tools/../lib/net/pointnet2_msg.py", line 91, in forward y = self.fc1(y) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 423, in forward return self._conv_forward(input, self.weight) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 419, in _conv_forward return F.conv2d(input, weight, self.bias, self.stride, RuntimeError: Expected 4-dimensional input for 4-dimensional weight [256, 1024, 1, 1], but got 3-dimensional input of size [16, 1, 1] instead,你知道是为什么吗?该如何解决?你可以给我提供详细的解决代码和注释吗?
这个错误提示说期望输入是4维的,但你提供的是3维的。这是因为在你的自注意力模块中,输入 `x` 的维度是 `(batch_size, channels, n)`,而在执行 `y = self.avg_pool(x)` 操作后,`y` 的维度会变成 `(batch_size, channels, 1, 1)`,这时你需要将 `y` 的维度再变回 `(batch_size, channels, n)`。可以使用 `torch.squeeze()` 函数来实现这个操作。
解决代码如下:
```
class SelfAttention(nn.Module):
def __init__(self, in_channels, reduction=4):
super(SelfAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc1 = nn.Conv2d(in_channels, in_channels // reduction, 1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(in_channels // reduction, in_channels, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
b, c, n = x.size()
y = self.avg_pool(x)
y = self.fc1(y)
y = self.relu(y)
y = self.fc2(y)
y = self.sigmoid(y)
# 将 y 的维度变回 (batch_size, channels, n)
y = y.squeeze(dim=-1).squeeze(dim=-1)
return x * y.unsqueeze(dim=-1).expand_as(x)
```
注释已经加上了,希望能够帮到你。
阅读全文