采用 PSNR(Peak Signal-to-Noise Ratio)和 SSIM(Structural Similarity Index)两个指标进行评价一个算法,这个算法的功能是将黑白人像照片进行彩色化,给出完整代码

时间: 2024-05-16 13:12:29 浏览: 133
这里是一个简单的彩色化算法,使用PyTorch实现,并且使用PSNR和SSIM两个指标进行评价: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import transforms, datasets from torch.utils.data import DataLoader from PIL import Image from skimage.measure import compare_psnr, compare_ssim # 定义彩色化模型 class ColorizationModel(nn.Module): def __init__(self): super(ColorizationModel, self).__init__() self.conv1 = nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1) self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1) self.conv4 = nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1) self.conv5 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.conv7 = nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1) self.conv8 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1) self.conv9 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv10 = nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1) self.conv11 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv12 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv13 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv14 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv15 = nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1) self.conv16 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv17 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv18 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv19 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv20 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv21 = nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1) self.conv22 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv23 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv24 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv25 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv26 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv27 = nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1) self.conv28 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.conv29 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.conv30 = nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1) self.conv31 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1) self.conv32 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1) self.conv33 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.conv34 = nn.Conv2d(64, 2, kernel_size=3, stride=1, padding=1) def forward(self, x): x = nn.functional.relu(self.conv1(x)) x = nn.functional.relu(self.conv2(x)) x = nn.functional.relu(self.conv3(x)) x = nn.functional.relu(self.conv4(x)) x = nn.functional.relu(self.conv5(x)) x = nn.functional.relu(self.conv6(x)) x = nn.functional.relu(self.conv7(x)) x = nn.functional.relu(self.conv8(x)) x = nn.functional.relu(self.conv9(x)) x = nn.functional.relu(self.conv10(x)) x = nn.functional.relu(self.conv11(x)) x = nn.functional.relu(self.conv12(x)) x = nn.functional.relu(self.conv13(x)) x = nn.functional.relu(self.conv14(x)) x = nn.functional.relu(self.conv15(x)) x = nn.functional.relu(self.conv16(x)) x = nn.functional.relu(self.conv17(x)) x = nn.functional.relu(self.conv18(x)) x = nn.functional.relu(self.conv19(x)) x = nn.functional.relu(self.conv20(x)) x = nn.functional.relu(self.conv21(x)) x = nn.functional.relu(self.conv22(x)) x = nn.functional.relu(self.conv23(x)) x = nn.functional.relu(self.conv24(x)) x = nn.functional.relu(self.conv25(x)) x = nn.functional.relu(self.conv26(x)) x = nn.functional.relu(self.conv27(x)) x = nn.functional.relu(self.conv28(x)) x = nn.functional.relu(self.conv29(x)) x = nn.functional.relu(self.conv30(x)) x = nn.functional.relu(self.conv31(x)) x = nn.functional.relu(self.conv32(x)) x = nn.functional.tanh(self.conv33(x)) x = nn.functional.sigmoid(self.conv34(x)) return x # 定义训练函数 def train(model, train_loader, criterion, optimizer): model.train() for inputs, targets in train_loader: optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() # 定义测试函数 def test(model, test_loader): model.eval() psnr_total = 0 ssim_total = 0 for inputs, targets in test_loader: outputs = model(inputs) psnr_total += compare_psnr(targets[0].numpy().transpose(1, 2, 0), outputs[0].detach().numpy().transpose(1, 2, 0), data_range=1) ssim_total += compare_ssim(targets[0].numpy().transpose(1, 2, 0), outputs[0].detach().numpy().transpose(1, 2, 0), multichannel=True) psnr_avg = psnr_total / len(test_loader) ssim_avg = ssim_total / len(test_loader) return psnr_avg, ssim_avg # 定义数据集加载函数 def load_data(data_dir, batch_size): train_transforms = transforms.Compose([ transforms.Resize(256), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) test_transforms = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) ]) train_dataset = datasets.ImageFolder(root=data_dir + '/train', transform=train_transforms) train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_dataset = datasets.ImageFolder(root=data_dir + '/test', transform=test_transforms) test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False) return train_loader, test_loader # 设置超参数 data_dir = './data' batch_size = 64 lr = 0.001 num_epochs = 10 # 加载数据 train_loader, test_loader = load_data(data_dir, batch_size) # 初始化模型、损失函数和优化器 model = ColorizationModel() criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=lr) # 训练模型 for epoch in range(num_epochs): train(model, train_loader, criterion, optimizer) psnr, ssim = test(model, test_loader) print('Epoch [{}/{}], PSNR: {:.4f}, SSIM: {:.4f}'.format(epoch+1, num_epochs, psnr, ssim)) # 保存模型 torch.save(model.state_dict(), 'colorization_model.pth') ``` 注:此代码仅为示例,实际应用中还可以进行更多的优化和改进。
阅读全文

相关推荐

from PIL import Image import numpy as np import io # 读取原始图像和压缩后图像 original_img = Image.open('test.jpg') compressed_img = Image.open('test_compressed.jpg') # 将图像转换为 NumPy 数组 original_img_arr = np.array(original_img) compressed_img_arr = np.array(compressed_img) # 计算原始图像大小 original_size = original_img_arr.nbytes # 计算压缩后图像大小 compressed_size = compressed_img_arr.nbytes # 计算压缩率 compression_ratio = compressed_size / original_size # 计算峰值信噪比(PSNR) mse = np.mean((original_img_arr - compressed_img_arr) ** 2) psnr = 10 * np.log10(255**2 / mse) # 计算结构相似性指数(SSIM) from skimage.metrics import structural_similarity as ssim ssim_score = ssim(original_img_arr, compressed_img_arr, multichannel=True) # 计算峰值信噪比改进比(PSNR-HVS) from skimage.metrics import peak_signal_noise_ratio as psnr_hvs psnr_hvs_score = psnr_hvs(original_img_arr, compressed_img_arr, data_range=original_img_arr.max()) # 计算多样性信噪比(MS-SSIM) from skimage.metrics import multi_scale_ssim as ms_ssim ms_ssim_score = ms_ssim(original_img_arr, compressed_img_arr, data_range=original_img_arr.max(), win_size=11) # 计算复杂度压缩比(CPC) cpc = psnr / compression_ratio # 输出七种压缩率 print(f"Compression ratio: {compression_ratio:.4f}") print(f"Peak Signal-to-Noise Ratio (PSNR): {psnr:.2f}") print(f"Structural Similarity Index (SSIM): {ssim_score:.4f}") print(f"Peak Signal-to-Noise Ratio - HVS (PSNR-HVS): {psnr_hvs_score:.2f}") print(f"Multi-Scale Structural Similarity (MS-SSIM): {ms_ssim_score:.4f}") print(f"Complexity-Compression Ratio (CPC): {cpc:.2f}") print(f"Original size: {original_size:,}") print(f"Compressed size: {compressed_size:,}")ValueError: operands could not be broadcast together with shapes (417,556,3) (418,558,3)

大家在看

recommend-type

【答题卡识别】 Hough变换答题卡识别【含Matlab源码 250期】.zip

Matlab领域上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测、身份证识别、人民币识别、数字字母识别、手势识别、树叶识别、水果分级、条形码识别、瑕疵检测、芯片识别、指纹识别
recommend-type

Solar-Wind-Hybrid-Power-plant_matlab_

hybrid solar wind farm using matlab
recommend-type

OZ9350 设计规格书

OZ9350 设计规格书
recommend-type

看nova-scheduler如何选择计算节点-每天5分钟玩转OpenStack

本节重点介绍nova-scheduler的调度机制和实现方法:即解决如何选择在哪个计算节点上启动instance的问题。创建Instance时,用户会提出资源需求,例如CPU、内存、磁盘各需要多少。OpenStack将这些需求定义在flavor中,用户只需要指定用哪个flavor就可以了。可用的flavor在System->Flavors中管理。Flavor主要定义了VCPU,RAM,DISK和Metadata这四类。nova-scheduler会按照flavor去选择合适的计算节点。VCPU,RAM,DISK比较好理解,而Metatdata比较有意思,我们后面会具体讨论。下面介绍nova-s
recommend-type

机器视觉选型计算概述-不错的总结

机器视觉选型计算概述-不错的总结

最新推荐

recommend-type

6种图像评价原理(UCIQE、UICM、PSNR、SSIM、等效圆偏检测、图像信息熵)

* PSNR (Peak Signal-to-Noise Ratio) PSNR 是一种有参考图像评价指标,用于评价图像的失真度。它是基于图像信号最大可能功率和影响它的噪声功率的比值计算的。 * SSIM (Structural Similarity) SSIM 是一种有...
recommend-type

简单的基于 Kotlin 和 JavaFX 实现的推箱子小游戏示例代码

简单的基于 Kotlin 和 JavaFX 实现的推箱子小游戏示例代码。这个游戏包含了基本的地图布局、玩家控制角色推动箱子到目标位置的功能,不过目前还只是一个简单的控制台版本,你可以根据后续的提示进一步扩展为图形界面版本并添加推流相关功能(推流相对复杂些,涉及到网络传输和流媒体协议等知识,需要借助如 FFmpeg 或者专门的流媒体库来实现,这里先聚焦游戏本身的逻辑构建)
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,
recommend-type

matlab 中实现 astar

在MATLAB中,A*算法是一种用于求解最短路径问题的启发式搜索算法。它适用于带权重的图或网格,特别是当有大量潜在解决方案时,比如迷宫寻路问题。以下是使用MATLAB基本步骤来实现A*算法: 1. **数据结构准备**: - 创建一个二维数组表示地图,其中0代表可以通行的节点,其他值代表障碍物或边界。 - 定义一个队列(通常使用`prioritiesqueue`)来存储待探索的节点及其信息。 2. **初始化**: - 设定起始节点(start),目标节点(goal),以及每个节点的初始g值(从起点到该点的实际代价)和f值(g值加上估计的h值,即启发函数)。 3.