令r是BPSK的接收信号矢量,且 r=±√ε+n,n是均值为0,方差为N0/2的高斯随机变量. 假设先验概率相等,试推导得到最大似然判决的最 佳判决门限.
时间: 2024-03-04 13:48:23 浏览: 84
随机信号分析实验产生均匀和高斯分布及其均值方差计算
5星 · 资源好评率100%
根据最大似然准则,接收信号r应当判定为哪个符号取决于哪个符号的条件概率密度函数在该接收信号下的取值更大。因此,对于BPSK,有:
P(r|s=+√ε) = (1/√(2πN0))exp(-(r-√ε)²/(2N0))
P(r|s=-√ε) = (1/√(2πN0))exp(-(r+√ε)²/(2N0))
为了方便计算,我们可以对上述两个概率密度函数取对数:
ln(P(r|s=+√ε)) = -(r-√ε)²/(2N0) - 0.5ln(2πN0)
ln(P(r|s=-√ε)) = -(r+√ε)²/(2N0) - 0.5ln(2πN0)
因为先验概率相等,所以最大似然判决可以表示为:
r > θ,判定为 s=+√ε
r < -θ,判定为 s=-√ε
其中,θ为一个门限值。为了使判决正确率最大,我们需要让两个判决错误的概率相等,即:
P(r < -θ|s=+√ε) = P(r > θ|s=-√ε)
根据贝叶斯公式,有:
P(r < -θ|s=+√ε) = P(s=+√ε|r < -θ) / P(r < -θ)
P(r > θ|s=-√ε) = P(s=-√ε|r > θ) / P(r > θ)
将上述两个式子代入判决错误概率相等的条件中,得到:
P(s=+√ε|r < -θ) / P(r < -θ) = P(s=-√ε|r > θ) / P(r > θ)
根据贝叶斯公式,有:
P(s=+√ε|r < -θ) = P(r < -θ|s=+√ε)P(s=+√ε) / P(r < -θ)
P(s=-√ε|r > θ) = P(r > θ|s=-√ε)P(s=-√ε) / P(r > θ)
将上述两个式子代入判决错误概率相等的条件中,得到:
P(r < -θ|s=+√ε)P(s=+√ε) / P(r < -θ) = P(r > θ|s=-√ε)P(s=-√ε) / P(r > θ)
将P(r < -θ|s=+√ε)和P(r > θ|s=-√ε)带入上式中,整理得到:
exp(-θ²/(2N0)) = exp(-θ²/(2N0)),即 θ = √(2N0 ln2)
因此,最佳判决门限为 θ = √(2N0 ln2)。
阅读全文