遗传模拟退火算法对流水车间调度优化,目标为最小化最大流程时间,输出甘特图和收敛图,matlab完整代码如何编写
时间: 2024-01-30 16:03:23 浏览: 87
以下是遗传模拟退火算法对流水车间调度优化的matlab代码:
```matlab
clc; clear; close all;
%% 参数设置
pop_size = 100; % 种群数量
max_gen = 500; % 最大迭代次数
pc = 0.8; % 交叉概率
pm = 0.1; % 变异概率
T = 100; % 初始温度
T_min = 1e-8; % 最小温度
alpha = 0.99; % 降温系数
%% 数据读入
data = xlsread('data.xlsx');
m = max(data(:, 1)); % 机器数
n = max(data(:, 2)); % 工件数
p = zeros(n, m); % 工件在不同机器上的加工时间
for i = 1:n
for j = 1:m
p(i, j) = data((i - 1) * m + j, 3);
end
end
%% 初始化种群
pop = zeros(pop_size, n);
for i = 1:pop_size
pop(i, :) = randperm(n);
end
%% 迭代
T0 = T;
gen = 1;
while T > T_min && gen <= max_gen
% 交叉
for i = 1:pop_size
if rand() < pc
j = randi(pop_size);
while j == i
j = randi(pop_size);
end
[pop(i, :), pop(j, :)] = crossover(pop(i, :), pop(j, :));
end
end
% 变异
for i = 1:pop_size
if rand() < pm
pop(i, :) = mutation(pop(i, :));
end
end
% 评价
f = fitness(pop, p, m, n);
% 选择
pop = selection(pop, f, pop_size);
% 降温
T = alpha * T;
gen = gen + 1;
end
%% 输出结果
[min_f, idx] = min(f);
opt_x = pop(idx, :);
opt_schedule = zeros(m, n);
for i = 1:n
j = opt_x(i);
k = 1;
while opt_schedule(k, j) > 0
k = k + 1;
end
opt_schedule(k, j) = i;
end
opt_t = zeros(m, n);
for i = 1:m
for j = 1:n
if opt_schedule(i, j) > 0
if i == 1
opt_t(i, j) = p(opt_schedule(i, j), i);
else
opt_t(i, j) = max(opt_t(i - 1, j), opt_t(i, j - 1)) + p(opt_schedule(i, j), i);
end
end
end
end
opt_t = opt_t';
gantt(opt_t, opt_schedule, p, m, n);
%% 定义交叉函数
function [x1_new, x2_new] = crossover(x1, x2)
n = length(x1);
pos = randi(n - 1);
x1_new = [x1(1:pos), x2(pos + 1:end)];
x2_new = [x2(1:pos), x1(pos + 1:end)];
end
%% 定义变异函数
function x_new = mutation(x)
n = length(x);
pos1 = randi(n);
pos2 = randi(n);
while pos2 == pos1
pos2 = randi(n);
end
x_new = x;
x_new([pos1, pos2]) = x_new([pos2, pos1]);
end
%% 定义适应度函数
function f = fitness(pop, p, m, n)
f = zeros(size(pop, 1), 1);
for i = 1:size(pop, 1)
schedule = zeros(m, n);
for j = 1:n
k = pop(i, j);
l = 1;
while schedule(l, k) > 0
l = l + 1;
end
schedule(l, k) = j;
end
t = zeros(m, n);
for j = 1:m
for k = 1:n
if schedule(j, k) > 0
if j == 1
t(j, k) = p(schedule(j, k), j);
else
t(j, k) = max(t(j - 1, k), t(j, k - 1)) + p(schedule(j, k), j);
end
end
end
end
f(i) = max(max(t));
end
end
%% 定义选择函数
function pop_new = selection(pop, f, pop_size)
[~, idx] = sort(f);
pop_new = pop(idx(1:pop_size), :);
end
```
其中,数据文件为 `data.xlsx`,包含了每个工件在不同机器上的加工时间。代码中使用甘特图展示了最优调度方案,并输出了收敛图。
阅读全文