补全代码:def compute_cost(X, y, w, b, lambda_= 1): m, n = X.shape return total_cost

时间: 2024-04-06 15:30:39 浏览: 14
def compute_cost(X, y, w, b, lambda_= 1): m, n = X.shape y_hat = np.dot(X, w) + b cost = np.sum((y_hat - y)**2) / (2*m) + lambda_ * np.sum(w**2) return cost
相关问题

修改为逻辑回归的代价函数:def compute_cost(X, y, w, b, lambda_=1): m = X.shape[0] y_hat = np.dot(X, w) + b cost = np.sum((y_hat - y) ** 2) / (2 * m) + lambda_ / (2 * m) * np.sum(w ** 2) return cost

逻辑回归的代价函数如下所示: $$ J(w,b)=-\frac{1}{m}\sum_{i=1}^{m}\left[y^{(i)}\log\left(h_{w,b}(x^{(i)})\right)+\left(1-y^{(i)}\right)\log\left(1-h_{w,b}(x^{(i)})\right)\right]+\frac{\lambda}{2m}\sum_{j=1}^{n}w_j^2 $$ 其中,$m$ 表示样本数量,$n$ 表示特征数量,$y^{(i)}$ 表示第 $i$ 个样本的标签,$h_{w,b}(x^{(i)})$ 是模型对第 $i$ 个样本的预测结果,$\lambda$ 是正则化超参数。 对应的 Python 代码如下: ```python def compute_cost(X, y, w, b, lambda_=1): m = X.shape[0] y_hat = sigmoid(np.dot(X, w) + b) cost = -np.sum(y * np.log(y_hat) + (1 - y) * np.log(1 - y_hat)) / m + lambda_ / (2 * m) * np.sum(w ** 2) return cost ``` 其中,`sigmoid` 函数可以用以下代码实现: ```python def sigmoid(z): return 1 / (1 + np.exp(-z)) ```

简化并解释每行代码:X_train, y_train = load_data("data/ex2data2.txt") plot_data(X_train, y_train[:], pos_label="Accepted", neg_label="Rejected") plt.ylabel('Microchip Test 2') plt.xlabel('Microchip Test 1') plt.legend(loc="upper right") plt.show() mapped_X = map_feature(X_train[:, 0], X_train[:, 1]) def compute_cost_reg(X, y, w, b, lambda_=1): m = X.shape[0] cost = 0 f = sigmoid(np.dot(X, w) + b) reg = (lambda_/(2*m)) * np.sum(np.square(w)) cost = (1/m)np.sum(-ynp.log(f) - (1-y)*np.log(1-f)) + reg return cost def compute_gradient_reg(X, y, w, b, lambda_=1): m = X.shape[0] cost = 0 dw = np.zeros_like(w) f = sigmoid(np.dot(X, w) + b) err = (f - y) dw = (1/m)*np.dot(X.T, err) dw += (lambda_/m) * w db = (1/m) * np.sum(err) return db,dw X_mapped = map_feature(X_train[:, 0], X_train[:, 1]) np.random.seed(1) initial_w = np.random.rand(X_mapped.shape[1]) - 0.5 initial_b = 0.5 lambda_ = 0.5 dj_db, dj_dw = compute_gradient_reg(X_mapped, y_train, initial_w, initial_b, lambda_) np.random.seed(1) initial_w = np.random.rand(X_mapped.shape[1])-0.5 initial_b = 1. lambda_ = 0.01; iterations = 10000 alpha = 0.01 w,b, J_history,_ = gradient_descent(X_mapped, y_train, initial_w, initial_b, compute_cost_reg, compute_gradient_reg, alpha, iterations, lambda_) plot_decision_boundary(w, b, X_mapped, y_train) p = predict(X_mapped, w, b) print('Train Accuracy: %f'%(np.mean(p == y_train) * 100))

这段代码主要实现了一个二分类问题的训练和预测。下面是每一行代码的解释: ``` X_train, y_train = load_data("data/ex2data2.txt") ``` 从文件中读取训练数据,将特征存储在X_train中,将标签存储在y_train中。 ``` plot_data(X_train, y_train[:], pos_label="Accepted", neg_label="Rejected") plt.ylabel('Microchip Test 2') plt.xlabel('Microchip Test 1') plt.legend(loc="upper right") plt.show() ``` 画出训练数据的散点图,其中Accepted为正例标签,Rejected为负例标签,横坐标为Microchip Test 1,纵坐标为Microchip Test 2。 ``` mapped_X = map_feature(X_train[:, 0], X_train[:, 1]) ``` 将原始特征映射成更高维的特征,以便更好地拟合非线性决策边界。 ``` def compute_cost_reg(X, y, w, b, lambda_=1): m = X.shape[0] cost = 0 f = sigmoid(np.dot(X, w) + b) reg = (lambda_/(2*m)) * np.sum(np.square(w)) cost = (1/m)np.sum(-ynp.log(f) - (1-y)*np.log(1-f)) + reg return cost ``` 计算带正则化的逻辑回归代价函数,其中X为特征数据,y为标签,w为权重,b为偏置,lambda_为正则化参数。 ``` def compute_gradient_reg(X, y, w, b, lambda_=1): m = X.shape[0] cost = 0 dw = np.zeros_like(w) f = sigmoid(np.dot(X, w) + b) err = (f - y) dw = (1/m)*np.dot(X.T, err) dw += (lambda_/m) * w db = (1/m) * np.sum(err) return db,dw ``` 计算带正则化的逻辑回归梯度,其中X为特征数据,y为标签,w为权重,b为偏置,lambda_为正则化参数。 ``` X_mapped = map_feature(X_train[:, 0], X_train[:, 1]) np.random.seed(1) initial_w = np.random.rand(X_mapped.shape[1]) - 0.5 initial_b = 0.5 lambda_ = 0.5 dj_db, dj_dw = compute_gradient_reg(X_mapped, y_train, initial_w, initial_b, lambda_) ``` 将映射后的特征、权重、偏置和正则化参数传入梯度计算函数,计算出代价函数对权重和偏置的偏导数。 ``` np.random.seed(1) initial_w = np.random.rand(X_mapped.shape[1])-0.5 initial_b = 1. lambda_ = 0.01; iterations = 10000; alpha = 0.01 w,b, J_history,_ = gradient_descent(X_mapped, y_train, initial_w, initial_b, compute_cost_reg, compute_gradient_reg, alpha, iterations, lambda_) ``` 使用梯度下降算法对代价函数进行优化,得到最优的权重和偏置,lambda_为正则化参数,iterations为迭代次数,alpha为学习率。 ``` plot_decision_boundary(w, b, X_mapped, y_train) ``` 画出决策边界。 ``` p = predict(X_mapped, w, b) print('Train Accuracy: %f'%(np.mean(p == y_train) * 100)) ``` 使用训练好的模型进行预测,并计算训练精度。

相关推荐

def nnCostFunction(nn_params,input_layer_size, hidden_layer_size, num_labels,X, y,Lambda): # Reshape nn_params back into the parameters Theta1 and Theta2 Theta1 = nn_params[:((input_layer_size+1) * hidden_layer_size)].reshape(hidden_layer_size,input_layer_size+1) Theta2 = nn_params[((input_layer_size +1)* hidden_layer_size ):].reshape(num_labels,hidden_layer_size+1) m = X.shape[0] J=0 X = np.hstack((np.ones((m,1)),X)) y10 = np.zeros((m,num_labels)) a1 = sigmoid(X @ Theta1.T) a1 = np.hstack((np.ones((m,1)), a1)) # hidden layer a2 = sigmoid(a1 @ Theta2.T) # output layer for i in range(1,num_labels+1): y10[:,i-1][:,np.newaxis] = np.where(y==i,1,0) for j in range(num_labels): J = J + sum(-y10[:,j] * np.log(a2[:,j]) - (1-y10[:,j])*np.log(1-a2[:,j])) cost = 1/m* J reg_J = cost + Lambda/(2*m) * (np.sum(Theta1[:,1:]**2) + np.sum(Theta2[:,1:]**2)) # Implement the backpropagation algorithm to compute the gradients grad1 = np.zeros((Theta1.shape)) grad2 = np.zeros((Theta2.shape)) for i in range(m): xi= X[i,:] # 1 X 401 a1i = a1[i,:] # 1 X 26 a2i =a2[i,:] # 1 X 10 d2 = a2i - y10[i,:] d1 = Theta2.T @ d2.T * sigmoidGradient(np.hstack((1,xi @ Theta1.T))) grad1= grad1 + d1[1:][:,np.newaxis] @ xi[:,np.newaxis].T grad2 = grad2 + d2.T[:,np.newaxis] @ a1i[:,np.newaxis].T grad1 = 1/m * grad1 grad2 = 1/m*grad2 grad1_reg = grad1 + (Lambda/m) * np.hstack((np.zeros((Theta1.shape[0],1)),Theta1[:,1:])) grad2_reg = grad2 + (Lambda/m) * np.hstack((np.zeros((Theta2.shape[0],1)),Theta2[:,1:])) return cost, grad1, grad2,reg_J, grad1_reg,grad2_reg

最新推荐

recommend-type

华为OD机试D卷 - 用连续自然数之和来表达整数 - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

Screenshot_2024-05-10-20-21-01-857_com.chaoxing.mobile.jpg

Screenshot_2024-05-10-20-21-01-857_com.chaoxing.mobile.jpg
recommend-type

数字图像处理|Matlab-频域增强实验-彩色图像的频域滤波.zip

数字图像处理|Matlab-频域增强实验-彩色图像的频域滤波.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这