python实现cplex求解tsp问题
时间: 2023-06-27 10:04:15 浏览: 233
python调用cplex解决tsp问题
4星 · 用户满意度95%
TSP问题是旅行商问题,即在给定的一组城市中,旅行商要找到一条最短的路径,使得每个城市恰好被访问一次,最后回到起点。下面是利用IBM的Cplex求解TSP问题的Python代码:
```python
import sys
import cplex
from cplex.exceptions import CplexError
import numpy as np
def solve_tsp(cities):
n = len(cities)
dist = np.zeros((n, n))
for i in range(n):
for j in range(n):
dist[i][j] = np.linalg.norm(np.array(cities[i])-np.array(cities[j]))
my_obj = dist.flatten()
my_colnames = ["x"+str(i) for i in range(n*n)]
my_lb = [0.0]*n*n
my_ub = [1.0]*n*n
my_ctype = "I"*n*n
my_rhs = [1.0]*n + [n-1.0]*n
my_sense = "E"*n + "L"*n
rows = []
for i in range(n):
row = []
for j in range(n):
row.append(i*n+j)
rows.append(cplex.SparsePair(ind=row, val=[1.0]*n))
for i in range(n):
row = []
for j in range(n):
row.append(j*n+i)
rows.append(cplex.SparsePair(ind=row, val=[1.0]*n))
for i in range(n):
for j in range(n):
if i != j:
row = []
for k in range(n):
if k != i and k != j:
row.append(k*n+i)
row.append(j*n+i)
rows.append(cplex.SparsePair(ind=row, val=[1.0]*len(row)))
for i in range(n):
for j in range(n):
if i != j:
row = []
for k in range(n):
if k != i and k != j:
row.append(i*n+k)
row.append(i*n+j)
rows.append(cplex.SparsePair(ind=row, val=[1.0]*len(row)))
prob = cplex.Cplex()
prob.objective.set_sense(prob.objective.sense.minimize)
prob.variables.add(obj=my_obj, lb=my_lb, ub=my_ub, types=my_ctype, names=my_colnames)
prob.linear_constraints.add(lin_expr=rows, senses=my_sense, rhs=my_rhs)
try:
prob.solve()
except CplexError as exc:
print(exc)
return
print("Optimal solution:", prob.solution.get_objective_value())
x = prob.solution.get_values()
tour = []
for i in range(n):
for j in range(n):
if x[i*n+j] > 0.5:
tour.append((i, j))
return tour
```
这个算法的思路是:将每个城市看作一个节点,每个节点之间的距离为边,构建一个完全图。然后,将每个节点与它所连向的边看作变量,构建一个线性规划模型,使得每个节点都恰好被访问一次,并且路径总长度最小。利用Cplex求解这个模型,可以得到最优解。
阅读全文