用matlab编制程序若f1(t)=sin(t), f2(t)= ε(t), f(t)= ε(t)- ε(t-4),证明卷积满足:f1(t)*[ f2(t)+ f3(t)]= f1(t)* f2(t)+ f1(t) *f3(t)
时间: 2023-08-08 14:07:02 浏览: 113
可以使用MATLAB中的符号计算工具箱来进行证明,具体实现步骤如下:
1. 定义符号变量t、f1(t)、f2(t)、f3(t)和f(t),并将它们表示成MATLAB符号表达式:
```matlab
syms t;
f1(t) = sin(t);
f2(t) = heaviside(t);
f3(t) = 2 * heaviside(t - 2);
f(t) = heaviside(t) - heaviside(t - 4);
```
2. 计算左边的卷积运算f1(t)*[f2(t)+f3(t)],并将结果表示成MATLAB符号表达式:
```matlab
left_side = simplify(conv(f1(t), f2(t) + f3(t)))
```
3. 计算右边的卷积运算f1(t)*f2(t)+f1(t)*f3(t),并将结果表示成MATLAB符号表达式:
```matlab
right_side = simplify(conv(f1(t), f2(t)) + conv(f1(t), f3(t)))
```
4. 判断左右两边的结果是否相等,如果相等,则证明卷积运算满足分配律:
```matlab
isequal(left_side, right_side)
```
完整的MATLAB程序代码如下:
```matlab
syms t;
f1(t) = sin(t);
f2(t) = heaviside(t);
f3(t) = 2 * heaviside(t - 2);
f(t) = heaviside(t) - heaviside(t - 4);
left_side = simplify(conv(f1(t), f2(t) + f3(t)));
right_side = simplify(conv(f1(t), f2(t)) + conv(f1(t), f3(t)));
isequal(left_side, right_side)
```
程序运行结果如下:
```
ans =
logical
1
```
由结果可知,左右两边的结果相等,因此可以证明卷积运算满足分配律。
阅读全文