代码解析: def build_P_prime(self, batch_C_prime, pc_score,device='cuda'): """Generate Grid from batch_C_prime [batch_size x num_fiducial x 2]""" batch_size = batch_C_prime.size(0) batch_inv_delta_C = self.hat_C.to(device).repeat(batch_size, 1, 1) batch_P_hat = self.P_hat.repeat(batch_size, 1, 1) batch_P_hat = self.P_hat_score_process(batch_P_hat,pc_score, device) batch_C_prime_with_zeros = torch.cat( (batch_C_prime, torch.zeros(batch_size, 3, 2).float().to(device)), dim=1) # batch_size x num_fiducial+3 x 2 batch_T = torch.bmm( batch_inv_delta_C, batch_C_prime_with_zeros) # batch_size x num_fiducial+3 x 2 batch_P_prime = torch.bmm(batch_P_hat, batch_T) # batch_size x n x 2 return batch_P_prime # batch_size x n x 2
时间: 2024-04-01 22:35:08 浏览: 46
envi_batch_template.rar_Envi 批处理_batch_envi_envi_batch_template_
这段代码实现了一个函数build_P_prime,它的作用是根据输入的batch_C_prime [batch_size x num_fiducial x 2]和pc_score,生成一个Grid [batch_size x n x 2]。具体实现过程如下:
- 首先获取batch_size的大小,即输入的batch_C_prime中有多少个样本。
- 接着,将self.hat_C(一个常量矩阵)复制batch_size次,并将维度扩展为[batch_size x num_fiducial x num_fiducial],即batch_inv_delta_C。这里使用了PyTorch中的repeat函数。
- 然后,将self.P_hat(一个常量矩阵)复制batch_size次,并将维度扩展为[batch_size x num_fiducial x num_fiducial],即batch_P_hat。接着,使用self.P_hat_score_process函数对batch_P_hat进行处理,根据pc_score对其中的某些元素进行修改,得到经过处理的batch_P_hat。
- 将batch_C_prime和一个全0的tensor(大小为[batch_size x 3 x 2])按维度1进行拼接,得到一个新的tensor,大小为[batch_size x num_fiducial+3 x 2],即batch_C_prime_with_zeros。
- 对batch_inv_delta_C与batch_C_prime_with_zeros进行矩阵乘法,得到一个新的tensor,大小为[batch_size x num_fiducial+3 x 2],即batch_T。
- 对batch_P_hat与batch_T进行矩阵乘法,得到一个新的tensor,大小为[batch_size x n x 2],即batch_P_prime,其中n=num_fiducial+3。
- 最后返回batch_P_prime。
阅读全文