继续输出lenet的c++代码
时间: 2023-03-05 07:27:17 浏览: 117
卷积神经网络lenet-5的c++实现
4星 · 用户满意度95%
以下是使用C语言实现的LeNet模型代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define IMAGE_WIDTH 28
#define IMAGE_HEIGHT 28
#define NUM_CLASSES 10
// Convolution layer parameters
#define CONV1_KERNEL_SIZE 5
#define CONV1_NUM_FILTERS 6
#define CONV1_PADDING 0
#define CONV1_STRIDE 1
// Subsampling layer parameters
#define SUBSAMP1_KERNEL_SIZE 2
#define SUBSAMP1_STRIDE 2
#define CONV2_KERNEL_SIZE 5
#define CONV2_NUM_FILTERS 16
#define CONV2_PADDING 0
#define CONV2_STRIDE 1
#define SUBSAMP2_KERNEL_SIZE 2
#define SUBSAMP2_STRIDE 2
#define FULLY_CONNECTED_SIZE 120
// Activation function
#define RELU(x) ((x) > 0 ? (x) : 0)
// Structure to hold convolution layer
typedef struct ConvLayer {
int num_filters;
int filter_size;
int stride;
int padding;
float *filters;
float *biases;
} ConvLayer;
// Structure to hold subsampling layer
typedef struct SubsampLayer {
int kernel_size;
int stride;
} SubsampLayer;
// Structure to hold fully connected layer
typedef struct FCLayer {
int input_size;
int output_size;
float *weights;
float *biases;
} FCLayer;
// Function to perform convolution on input image
void conv(float *input, ConvLayer *layer, float *output) {
int i, j, k, l, m, n;
int padded_width = IMAGE_WIDTH + 2 * layer->padding;
int padded_height = IMAGE_HEIGHT + 2 * layer->padding;
int output_width = (int)ceil((float)(padded_width - layer->filter_size + 1) / layer->stride);
int output_height = (int)ceil((float)(padded_height - layer->filter_size + 1) / layer->stride);
float *padded_input = (float *)calloc(padded_width * padded_height * sizeof(float), 1);
// Zero-pad the input image
for (i = 0; i < IMAGE_HEIGHT; i++) {
for (j = 0; j < IMAGE_WIDTH; j++) {
padded_input[(i + layer->padding) * padded_width + (j + layer->padding)] = input[i * IMAGE_WIDTH + j];
}
}
// Convolve each filter with the input image
for (i = 0; i < layer->num_filters; i++) {
for (j = 0; j < output_height; j++) {
for (k = 0; k < output_width; k++) {
float sum = 0.0;
for (l = 0; l < layer->filter_size; l++) {
for (m = 0; m < layer->filter_size; m++) {
sum += padded_input[(j * layer->stride + l) * padded_width + (k * layer->stride + m)] * layer->filters[(i * layer->filter_size + l) * layer->filter_size + m];
}
}
output[(i * output_height + j) * output_width + k] = RELU(sum + layer->biases[i]);
}
}
}
free(padded_input);
}
// Function to perform subsampling on input image
void subsamp(float *input, SubsampLayer *layer, float
阅读全文