提供代码实现
时间: 2023-09-17 08:08:39 浏览: 60
代码实现的是基于4的FFT和IFFT算法的实现,其实现方式是使用Matlab来实现的.zip
以下是使用Python和PyTorch实现一个简单的ChitGPT模型的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
# 定义ChitGPT模型的超参数
embedding_size = 128
hidden_size = 256
num_layers = 4
num_heads = 8
dropout = 0.2
max_length = 20
batch_size = 64
learning_rate = 0.001
num_epochs = 10
# 构建ChitGPT模型
class ChitGPT(nn.Module):
def __init__(self, vocab_size):
super(ChitGPT, self).__init__()
self.embedding = nn.Embedding(vocab_size, embedding_size)
self.transformer = nn.Transformer(
d_model=embedding_size,
nhead=num_heads,
num_encoder_layers=num_layers,
num_decoder_layers=num_layers,
dim_feedforward=hidden_size,
dropout=dropout,
)
self.fc = nn.Linear(embedding_size, vocab_size)
def forward(self, input_ids):
embeddings = self.embedding(input_ids)
outputs = self.transformer(embeddings, embeddings)
logits = self.fc(outputs[-1])
return logits
# 定义数据集类
class ChatDataset(Dataset):
def __init__(self, data_path):
self.data = []
with open(data_path, 'r', encoding='utf-8') as f:
for line in f:
self.data.append(line.strip())
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
input_text = self.data[idx]
input_ids = [vocab2id.get(token, unk_id) for token in input_text.split()]
input_ids = input_ids[:max_length] + [pad_id] * (max_length - len(input_ids))
return torch.LongTensor(input_ids)
# 加载数据集和词表
train_dataset = ChatDataset('train.txt')
vocab = set()
for text in train_dataset.data:
vocab.update(text.split())
vocab2id = {token: i for i, token in enumerate(vocab)}
pad_id = len(vocab2id)
unk_id = len(vocab2id) + 1
vocab2id['[PAD]'] = pad_id
vocab2id['[UNK]'] = unk_id
id2vocab = {i: token for token, i in vocab2id.items()}
vocab_size = len(vocab2id)
# 构建数据加载器
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# 初始化模型和优化器
model = ChitGPT(vocab_size)
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(num_epochs):
for input_ids in train_loader:
input_ids = input_ids.transpose(0, 1)
logits = model(input_ids[:-1])
labels = input_ids[1:]
loss = nn.CrossEntropyLoss()(logits.reshape(-1, vocab_size), labels.reshape(-1))
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'Epoch {epoch + 1}/{num_epochs}, Loss: {loss.item():.4f}')
# 使用训练好的模型进行预测
input_text = '你好'
input_ids = [vocab2id.get(token, unk_id) for token in input_text.split()]
input_ids = input_ids[:max_length] + [pad_id] * (max_length - len(input_ids))
input_ids = torch.LongTensor(input_ids).unsqueeze(1)
with torch.no_grad():
for i in range(max_length - 1):
logits = model(input_ids[:-1])
next_token_id = logits[-1].argmax().item()
input_ids[-1] = next_token_id
if next_token_id == pad_id:
break
output_text = ' '.join([id2vocab.get(i.item(), '[UNK]') for i in input_ids[:, 0]])
print(f'Output: {output_text}')
```
这个示例代码中构建了一个简单的ChitGPT模型,使用一个基于对话数据的数据集进行训练,然后使用训练好的模型对输入的文本进行预测。你可以根据自己的需求,修改超参数、数据集和模型结构,来构建适合自己应用场景的ChitGPT模型。
阅读全文