写一个transformer的编码器
时间: 2023-10-14 07:11:16 浏览: 99
Transformer代码
5星 · 资源好评率100%
以下是一个简单的Transformer编码器的实现:
```python
import torch
import torch.nn as nn
class TransformerEncoder(nn.Module):
def __init__(self, d_model, nhead, num_layers, dim_feedforward, dropout):
super(TransformerEncoder, self).__init__()
self.d_model = d_model
self.nhead = nhead
self.num_layers = num_layers
self.pos_encoding = PositionalEncoding(d_model, dropout)
self.transformer_layers = nn.ModuleList([TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout) for _ in range(num_layers)])
def forward(self, src, mask=None):
src = self.pos_encoding(src)
for i in range(self.num_layers):
src = self.transformer_layers[i](src, mask)
return src
class TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward, dropout):
super(TransformerEncoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.feed_forward = nn.Sequential(
nn.Linear(d_model, dim_feedforward),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(dim_feedforward, d_model),
nn.Dropout(dropout)
)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, src, mask=None):
src2, _ = self.self_attn(src, src, src, attn_mask=mask)
src = src + self.dropout(src2)
src = self.norm1(src)
src2 = self.feed_forward(src)
src = src + self.dropout(src2)
src = self.norm2(src)
return src
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
```
在这个实现中,我们定义了一个`TransformerEncoder`和一个`TransformerEncoderLayer`类。`TransformerEncoder`类包含了多个`TransformerEncoderLayer`层。每个`TransformerEncoderLayer`层有一个自注意力层和一个前馈网络层。我们还定义了一个`PositionalEncoding`类来添加位置编码。
在`TransformerEncoder`类的`forward`方法中,我们首先对输入进行位置编码,然后依次通过每个`TransformerEncoderLayer`层。最后,我们将编码后的结果返回。
在`TransformerEncoderLayer`类的`forward`方法中,我们首先通过自注意力层进行自注意力计算。然后,我们使用残差连接和层归一化将输入与自注意力输出相加,并进行一次Dropout操作。接下来,我们通过前馈网络层,并再次使用残差连接和层归一化将输入与前馈网络输出相加,并进行一次Dropout操作。最终,我们返回输出。
在`PositionalEncoding`类的`__init__`方法中,我们生成一个位置编码矩阵,并在`forward`方法中将其添加到输入中。我们还使用Dropout对输出进行正则化。
阅读全文