def train(**kwargs): for k_, v_ in kwargs.items(): setattr(opt, k_, v_) device = t.device('cuda') if opt.gpu else t.device('cpu') if opt.vis: from visualize import Visualizer vis = Visualizer(opt.env) # 数据 transforms = tv.transforms.Compose([ tv.transforms.Resize(opt.image_size), tv.transforms.CenterCrop(opt.image_size), tv.transforms.ToTensor(), tv.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) dataset = tv.datasets.ImageFolder(opt.data_path, transform=transforms) dataloader = t.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers, drop_last=True )的含义
时间: 2024-01-15 11:05:39 浏览: 92
解决Keras中循环使用K.ctc_decode内存不释放的问题
这段代码是一个用于训练神经网络的函数,其具体含义如下:
1. 函数的参数通过kwargs传入,然后使用setattr函数将参数的值设置为opt的属性。opt是一个命名空间,包含了训练中需要的各种参数。
2. 根据opt.gpu的取值,确定使用CPU还是GPU进行训练。
3. 如果opt.vis为True,则从visualize模块中导入Visualizer类,并创建一个可视化实例vis。
4. 定义数据的预处理方式,包括将图片调整为opt.image_size大小、居中裁剪、转换为张量、以及RGB通道的归一化处理。
5. 加载数据集,使用ImageFolder类读取opt.data_path路径下的图片,并使用上一步定义的transforms进行预处理。将处理后的数据集分成大小为opt.batch_size的多个批次,并使用DataLoader类将它们打包成一个可迭代的对象,同时也可以设置多线程读取数据,提高数据读取效率。
6. 函数返回DataLoader对象,供后续使用。
阅读全文