写一段matlab差分进化代码,其中种群分为两类,一类是30到100,另一类是300到100000
时间: 2024-02-17 19:04:18 浏览: 29
好的,以下是一段简单的 Matlab 差分进化算法代码,其中种群分为两类:
```matlab
function [bestSol, bestFitness] = DE(populationSize, lowerBound1, upperBound1, lowerBound2, upperBound2)
% populationSize: 种群大小
% lowerBound1, upperBound1: 种群1的取值范围
% lowerBound2, upperBound2: 种群2的取值范围
% 初始化种群1和种群2
pop1 = randi([lowerBound1, upperBound1], [populationSize, 1]);
pop2 = randi([lowerBound2, upperBound2], [populationSize, 1]);
% 计算每个个体的适应度值
fitness = calculateFitness(pop1, pop2);
% 循环迭代
for i = 1:1000
% 选择三个个体进行变异
idx = randperm(populationSize, 3);
target = pop1(idx(1), 1);
mutant = pop1(idx(2), 1) + 0.5 * (pop1(idx(3), 1) - pop1(idx(2), 1));
% 交叉生成新个体
crossProb = rand(populationSize, 1);
crossIdx = crossProb < 0.8;
trialPop1 = pop1;
trialPop1(crossIdx, 1) = mutant(crossIdx, 1);
trialPop2 = pop2;
trialPop2(crossIdx, 1) = randi([lowerBound2, upperBound2], [sum(crossIdx), 1]);
% 选择新个体替换旧个体
trialFitness = calculateFitness(trialPop1, trialPop2);
replaceIdx = trialFitness < fitness;
pop1(replaceIdx, 1) = trialPop1(replaceIdx, 1);
pop2(replaceIdx, 1) = trialPop2(replaceIdx, 1);
fitness(replaceIdx, 1) = trialFitness(replaceIdx, 1);
end
% 返回适应度最优的个体和适应度值
[bestFitness, bestIdx] = min(fitness);
bestSol = [pop1(bestIdx, 1), pop2(bestIdx, 1)];
end
function fitness = calculateFitness(pop1, pop2)
% 计算每个个体的适应度值
fitness = abs(pop1 .* sin(pop2) - 1);
end
```
其中,种群1的取值范围为 [lowerBound1, upperBound1],种群2的取值范围为 [lowerBound2, upperBound2],种群大小为 populationSize。calculateFitness 函数是适应度函数,用于计算每个个体的适应度值。DE 函数是差分进化算法的主函数,用于进行迭代优化,最终返回适应度最优的个体和适应度值。
需要注意的是,本算法代码中并没有判断种群大小是否符合要求,需要在调用 DE 函数之前对种群大小进行判断。
阅读全文