深度残差收缩网络tensorflow2.0
时间: 2023-05-27 13:04:44 浏览: 122
tensorflow2.0-unet:tensorflow2.0,resnet,unet
深度残差收缩网络是一种用于图像分类和物体识别的神经网络模型。它结合了残差网络和通道压缩技术,实现了更高的准确率和更小的模型规模。下面是使用TensorFlow 2.0实现深度残差收缩网络的简单示例代码。
首先,导入必要的库:
```
import tensorflow as tf
from tensorflow.keras import layers
```
定义一个ResNet模块的函数:
```
def resnet_module(input_tensor, filters, stride, reduce=False):
shortcut = input_tensor
bn_axis = 3
if reduce:
shortcut = layers.Conv2D(filters, (1, 1), strides=stride)(shortcut)
shortcut = layers.BatchNormalization(axis=bn_axis)(shortcut)
x = layers.Conv2D(filters, (3, 3), strides=stride, padding="same")(input_tensor)
x = layers.BatchNormalization(axis=bn_axis)(x)
x = layers.Activation("relu")(x)
x = layers.Conv2D(filters, (3, 3), padding="same")(x)
x = layers.BatchNormalization(axis=bn_axis)(x)
x = layers.add([x, shortcut])
x = layers.Activation("relu")(x)
return x
```
接下来,定义一个深度残差收缩网络模型:
```
def ResNet(input_shape, num_classes):
input_tensor = layers.Input(shape=input_shape)
bn_axis = 3
x = layers.Conv2D(64, (7, 7), strides=(2, 2), padding="same")(input_tensor)
x = layers.BatchNormalization(axis=bn_axis)(x)
x = layers.Activation("relu")(x)
x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x)
x = resnet_module(x, 64, stride=(1, 1))
x = resnet_module(x, 64, stride=(1, 1))
x = resnet_module(x, 128, stride=(2, 2), reduce=True)
x = resnet_module(x, 128, stride=(1, 1))
x = resnet_module(x, 256, stride=(2, 2), reduce=True)
x = resnet_module(x, 256, stride=(1, 1))
x = resnet_module(x, 512, stride=(2, 2), reduce=True)
x = resnet_module(x, 512, stride=(1, 1))
x = layers.GlobalAveragePooling2D()(x)
x = layers.Dense(num_classes, activation="softmax")(x)
model = tf.keras.Model(inputs=input_tensor, outputs=x, name="ResNet")
return model
```
最后,编译并训练模型:
```
model = ResNet(input_shape=(224, 224, 3), num_classes=1000)
model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.01), loss="categorical_crossentropy", metrics=["accuracy"])
# train the model
model.fit(train_data, epochs=10, validation_data=val_data)
```
以上代码只是一个简单示例,可以根据实际需求进行修改和优化。
阅读全文