更改eca_Resnet50来进行图像去噪的pytorch代码
时间: 2024-06-09 22:11:57 浏览: 145
好的,我可以帮你更改eca_Resnet50来进行图像去噪的PyTorch代码。首先,我们需要将eca_Resnet50模型加载到PyTorch中。你可以使用以下代码加载eca_Resnet50模型:
```python
import torch
import torch.nn as nn
from eca_module import eca_layer
from torchvision.models.resnet import ResNet, Bottleneck
class ECA_ResNet(ResNet):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None, use_ecalayer=True):
super(ECA_ResNet, self).__init__(block, layers, num_classes=num_classes, zero_init_residual=zero_init_residual,
groups=groups, width_per_group=width_per_group,
replace_stride_with_dilation=replace_stride_with_dilation,
norm_layer=norm_layer)
if use_ecalayer:
self.ecalayer = eca_layer(channel=512)
else:
self.ecalayer = None
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
if self.ecalayer:
x = self.ecalayer(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
def eca_resnet50(pretrained=False, progress=True, use_ecalayer=True, **kwargs):
model = ECA_ResNet(Bottleneck, [3, 4, 6, 3], use_ecalayer=use_ecalayer, **kwargs)
if pretrained:
state_dict = torch.load('path/to/pretrained/eca_resnet50.pth')
model.load_state_dict(state_dict)
return model
```
这里我们使用了`ECA_ResNet`类来定义`eca_resnet50`模型,该类继承了`ResNet`类,并在其基础上添加了`eca_layer`。使用`use_ecalayer`参数可以控制是否使用`eca_layer`。如果`use_ecalayer`为True,则在最后一个卷积层后添加`eca_layer`层,否则不添加。
接下来,我们需要定义图像去噪的损失函数。在这里,我们可以使用均方误差(MSE)损失函数,即将输入图像与目标图像之间的像素值之差的平方和作为损失函数:
```python
import torch.nn.functional as F
def denoise_loss(input_image, target_image):
mse_loss = F.mse_loss(input_image, target_image)
return mse_loss
```
最后,我们可以使用以下代码来定义训练循环:
```python
import torch.optim as optim
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 加载模型
model = eca_resnet50(pretrained=True, use_ecalayer=True).to(device)
# 定义优化器和学习率
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练循环
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
# 获取训练数据
inputs, targets = data[0].to(device), data[1].to(device)
# 清空梯度
optimizer.zero_grad()
# 前向传播
outputs = model(inputs)
# 计算损失
loss = denoise_loss(outputs, targets)
# 反向传播和优化
loss.backward()
optimizer.step()
# 打印统计信息
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 100))
running_loss = 0.0
```
在这里,我们使用Adam优化器进行模型优化,并将模型移动到GPU设备(如果可用)。在训练循环中,我们首先获取训练数据,然后清空梯度,进行前向传播,并计算损失。接下来,我们进行反向传播并优化模型。最后,我们打印统计信息,以便跟踪模型的训练进展。