用 pytouch设计一个神经网络 识别图片验证码 提取字母和数字
时间: 2023-08-25 14:25:29 浏览: 152
基于CNN的数字字母验证码识别训练项目pytorch版.zip
好的,以下是一个使用PyTorch设计的神经网络识别图片验证码并提取字母和数字的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
# 定义神经网络
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.bn1 = nn.BatchNorm2d(16)
self.relu1 = nn.ReLU(inplace=True)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.bn2 = nn.BatchNorm2d(32)
self.relu2 = nn.ReLU(inplace=True)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(32 * 8 * 8, 256)
self.dropout1 = nn.Dropout(p=0.5)
self.fc2 = nn.Linear(256, 36)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.pool2(x)
x = x.view(-1, 32 * 8 * 8)
x = self.fc1(x)
x = self.dropout1(x)
x = self.fc2(x)
return x
# 加载数据集
transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
])
train_data = ImageFolder('train', transform=transform)
train_loader = DataLoader(train_data, batch_size=64, shuffle=True)
test_data = ImageFolder('test', transform=transform)
test_loader = DataLoader(test_data, batch_size=64)
# 定义损失函数和优化器
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
# 训练模型
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Epoch %d, Loss: %.3f, Accuracy: %.3f' % (epoch+1, running_loss/len(train_loader), 100*correct/total))
# 保存模型
torch.save(net.state_dict(), 'model.pt')
```
这个示例代码中,我们使用了一个卷积神经网络对图像进行分类,其中包括两个卷积层和两个全连接层。在训练过程中,我们使用了交叉熵损失函数和Adam优化器。在测试过程中,我们计算了模型的准确率。最后,我们将模型的参数保存到了一个文件中。你可以根据自己的需求进行修改和优化。
阅读全文