基于pytorch实现resnet34的代码
时间: 2023-09-04 13:04:24 浏览: 173
### 回答1:
以下是基于 PyTorch 实现 ResNet34 的代码:
```python
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
__all__ = ['ResNet', 'resnet34']
model_urls = {
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
}
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=100):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, )
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(), -1)
x = self.fc(x)
return x
def resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
return model
```
希望对你有所帮助!
### 回答2:
以下是一个基于PyTorch实现ResNet34的代码示例:
```python
import torch
import torch.nn as nn
# 定义残差块
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.stride = stride
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
else:
self.shortcut = nn.Sequential()
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += self.shortcut(residual)
out = self.relu(out)
return out
# 定义ResNet34
class ResNet34(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet34, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 64, 3)
self.layer2 = self._make_layer(64, 128, 4, stride=2)
self.layer3 = self._make_layer(128, 256, 6, stride=2)
self.layer4 = self._make_layer(256, 512, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def _make_layer(self, in_channels, out_channels, num_blocks, stride=1):
layers = []
layers.append(ResidualBlock(in_channels, out_channels, stride))
for _ in range(1, num_blocks):
layers.append(ResidualBlock(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
# 创建ResNet34的实例
model = ResNet34()
# 使用模型进行训练或推理
input_data = torch.randn(1, 3, 224, 224)
output = model(input_data)
print(output.shape)
```
这段代码实现了基于PyTorch的ResNet34模型。它定义了一个残差块(ResidualBlock)的类和一个ResNet34模型的类。在ResidualBlock中,通过两个卷积层和批归一化层实现残差连接。ResNet34类包含多个残差块组成的层。最后,模型通过全局平均池化层和全连接层生成预测结果。在使用模型之前,可以创建一个ResNet34的实例,并使用输入数据进行训练或推理。
### 回答3:
基于PyTorch实现ResNet34的代码如下:
```python
import torch
import torch.nn as nn
import torchvision.models as models
# 定义ResNet34网络结构
class ResNet34(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet34, self).__init__()
self.resnet34 = models.resnet34(pretrained=True)
# 冻结所有卷积层参数
for param in self.resnet34.parameters():
param.requires_grad = False
# 替换最后一层全连接层
self.resnet34.fc = nn.Linear(512, num_classes)
def forward(self, x):
x = self.resnet34(x)
return x
# 创建ResNet34模型实例
model = ResNet34()
# 加载预训练权重
model.load_state_dict(torch.load('resnet34.pth'))
# 输入数据
input_data = torch.randn(1, 3, 224, 224)
# 前向传播
output = model(input_data)
# 打印输出结果
print(output)
```
在代码中,我们使用了PyTorch的torchvision库,其中包含了常用的深度学习模型,包括ResNet。首先,我们定义了一个名为ResNet34的类,继承自nn.Module。在类的构造函数中,我们使用`models.resnet34(pretrained=True)`加载了预训练的ResNet34模型,并将其赋值给self.resnet34。
然后,我们通过遍历self.resnet34的参数来冻结所有的卷积层参数,这是因为我们只需要训练最后一层全连接层。接下来,我们替换了最后一层全连接层,将输出类别数目设为num_classes。
在前向传播函数forward中,我们调用了self.resnet34进行前向传播,并返回输出结果。
最后,我们创建了一个ResNet34的实例model,并加载了预训练权重。然后,我们创建一个输入数据input_data,并进行前向传播,得到输出结果output。最后,我们打印输出结果。
这样,我们就实现了基于PyTorch的ResNet34模型的代码。