请帮我写出基于pytorch实现ResNet34网络实现图像二分类的代码并且包含训练集、验证集和测试集,且用tqdm实现训练进度可视化。

时间: 2024-02-27 13:58:09 浏览: 70
好的,以下是基于PyTorch实现ResNet34网络实现图像二分类的代码,包含训练集、验证集和测试集,同时用tqdm实现训练进度可视化: ```python import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler import torchvision from torchvision import datasets, models, transforms import numpy as np import matplotlib.pyplot as plt import time import os import copy from tqdm import tqdm # 数据增强和归一化处理 data_transforms = { 'train': transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]), } data_dir = 'path/to/data' # 数据存放路径 image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']} dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train', 'val']} dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']} class_names = image_datasets['train'].classes device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 定义ResNet34模型 model_ft = models.resnet34(pretrained=True) num_ftrs = model_ft.fc.in_features model_ft.fc = nn.Linear(num_ftrs, 2) model_ft = model_ft.to(device) criterion = nn.CrossEntropyLoss() # 优化器 optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9) # 学习率调整规则 exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1) # 训练模型 def train_model(model, criterion, optimizer, scheduler, num_epochs=25): since = time.time() best_model_wts = copy.deepcopy(model.state_dict()) best_acc = 0.0 # 训练过程 for epoch in range(num_epochs): print('Epoch {}/{}'.format(epoch, num_epochs - 1)) print('-' * 10) # 每个epoch都有训练和验证阶段 for phase in ['train', 'val']: if phase == 'train': model.train() # 训练模式 else: model.eval() # 验证模式 running_loss = 0.0 running_corrects = 0 # 迭代数据 for inputs, labels in tqdm(dataloaders[phase], desc='Epoch {} {}'.format(epoch, phase)): inputs = inputs.to(device) labels = labels.to(device) # 清零梯度 optimizer.zero_grad() # 前向传递 # 训练模式下跟踪历史记录,验证模式下不用跟踪历史记录 with torch.set_grad_enabled(phase == 'train'): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) # 反向传播和优化 if phase == 'train': loss.backward() optimizer.step() # 统计损失和正确预测的数量 running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) # 学习率调整 if phase == 'train': scheduler.step() epoch_loss = running_loss / dataset_sizes[phase] epoch_acc = running_corrects.double() / dataset_sizes[phase] print('{} Loss: {:.4f} Acc: {:.4f}'.format( phase, epoch_loss, epoch_acc)) # 如果当前模型在验证集上表现更好,则保存当前模型 if phase == 'val' and epoch_acc > best_acc: best_acc = epoch_acc best_model_wts = copy.deepcopy(model.state_dict()) print() time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) print('Best val Acc: {:4f}'.format(best_acc)) # 加载最佳模型权重 model.load_state_dict(best_model_wts) return model # 训练模型 model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=25) # 测试模型 def test_model(model, dataloaders): model.eval() running_loss = 0.0 running_corrects = 0 for inputs, labels in tqdm(dataloaders['val'], desc='Test'): inputs = inputs.to(device) labels = labels.to(device) with torch.set_grad_enabled(False): outputs = model(inputs) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) running_loss += loss.item() * inputs.size(0) running_corrects += torch.sum(preds == labels.data) test_loss = running_loss / dataset_sizes['val'] test_acc = running_corrects.double() / dataset_sizes['val'] print('Test Loss: {:.4f} Acc: {:.4f}'.format(test_loss, test_acc)) test_model(model_ft, dataloaders) ``` 希望能够对你有所帮助!

相关推荐

最新推荐

recommend-type

Pytorch使用MNIST数据集实现CGAN和生成指定的数字方式

在本教程中,我们将探讨如何使用PyTorch框架来实现条件生成对抗网络(CGAN)并利用MNIST数据集生成指定数字的图像。CGAN是一种扩展了基础生成对抗网络(GAN)的概念,它允许在生成过程中加入额外的条件信息,如类...
recommend-type

基于pytorch的UNet_demo实现及训练自己的数据集.docx

**基于PyTorch的UNet实现与训练指南** 在计算机视觉领域,UNet是一种广泛用于图像分割任务的深度学习模型,特别适用于像素级预测,如医学影像分析、语义分割等。本文将介绍如何在PyTorch环境中实现UNet网络,并训练...
recommend-type

PyTorch上搭建简单神经网络实现回归和分类的示例

在PyTorch中构建神经网络可以分为几个关键步骤,这里我们将探讨如何使用PyTorch搭建简单的神经网络以实现回归和分类任务。 首先,我们需要了解PyTorch的基本组件。其中,`torch.Tensor`是核心数据结构,它类似于...
recommend-type

PyTorch版YOLOv4训练自己的数据集—基于Google Colab

你需要将数据集分为训练集和验证集,并按照YOLOv4的要求格式化,通常包括类别标签、边界框坐标以及图像文件。 4. **配置训练参数**:在训练脚本中,你需要设置超参数,如学习率、批大小、训练轮数等。同时,要指定...
recommend-type

pytorch实现mnist数据集的图像可视化及保存

`torch`是PyTorch的核心库,`torchvision`包含了数据集和图像处理的模块,`torch.utils.data`用于数据加载,`scipy.misc`用于图像保存,`os`用于文件操作,而`matplotlib.pyplot`用于图像显示。 定义`BATCH_SIZE`为...
recommend-type

高效办公必备:可易文件夹批量生成器

资源摘要信息:"可易文件夹批量生成器软件是一款专业的文件夹管理工具,它具备从EXCEL导入内容批量创建文件夹的功能,同时也允许用户根据自定义规则批量生成文件夹名称。该软件支持组合多种命名规则,以便于用户灵活地根据实际需求生成特定的文件夹结构。用户可以指定输出目录,一键将批量生成的文件夹保存到指定位置,极大地提高了办公和电脑操作的效率。" 知识点详细说明: 1. 文件夹批量创建的必要性:在日常工作中,尤其是涉及到大量文档和项目管理时,手动创建文件夹不仅耗时而且容易出错。文件夹批量生成器软件可以自动完成这一过程,提升工作效率,保证文件组织的规范性和一致性。 2. 从EXCEL导入批量创建文件夹:该软件可以读取EXCEL文件中的内容,利用这些数据作为文件夹名称或文件夹结构的基础,实现快速而准确的文件夹创建。这意味着用户可以轻松地将现有的数据表格转换为结构化的文件系统。 3. 自定义设置规则名称批量生成文件夹:用户可以根据自己的需求定义命名规则,例如按照日期、项目编号、员工姓名或其他任意组合的方式来创建文件夹。软件支持多种命名规则的组合,使得文件夹的创建更加灵活和个性化。 4. 组合多种名称规则:软件不仅支持单一的命名规则,还可以将不同的命名规则进行组合,创建出更加复杂的文件夹命名和结构。这种组合功能对于那些需要详细文件夹分类和层次结构的场景尤其有用。 5. 自定义指定输出目录:用户可以自由选择文件夹批量生成的目标位置,将文件夹保存到任何指定的目录中。这样的自定义功能允许用户根据自己的文件管理系统和习惯来优化文件存储位置。 6. 一键保存批量生成的文件夹:软件提供了一键保存功能,使得文件夹的生成和保存操作更加简洁高效。用户无需手动一个个移动或复制文件夹,从而大大减少了操作步骤和时间消耗。 7. 适用对象:该软件特别适合需要频繁进行文件夹管理工作的办公人员或电脑操作人员。无论是管理大型项目,还是日常文档归档,它都能提供极大的帮助。 8. 软件优势:相较于传统的手动文件夹创建方法,可易文件夹批量生成器软件在自动化和效率上具有明显优势。它能够减少人为错误,节省大量时间,并且易于使用,即使是不太懂技术的用户也能快速掌握。 9. 安装与使用:该软件通常以EXE安装包的形式提供,用户只需下载并运行安装程序即可完成安装。安装后,通过简单的界面操作即可开始使用软件进行文件夹的批量创建。 总结:可易文件夹批量生成器软件是一款专为高效文件管理设计的实用工具,它通过自动化的批量操作简化了文件夹的创建过程,使得用户能够更加专注于其他更为重要的工作内容。对于任何需要高效管理和组织大量文件的场景,这款软件都将是提升工作效率的有力助手。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

策略制胜:Python第三方库警告处理避免日志污染

![策略制胜:Python第三方库警告处理避免日志污染](https://www.fireblazeaischool.in/blogs/wp-content/uploads/2020/06/Data-Types-In-Python-1024x576.png) # 1. Python第三方库警告处理的重要性 在Python编程实践中,第三方库的应用非常广泛,它们为开发者提供了丰富的功能,极大地提高了开发效率。然而,在使用第三方库时,警告信息是不可避免的。警告信息的出现通常是由于代码中潜在的问题,或者是不符合预期的行为,它们对于确保程序的健壮性和稳定性至关重要。 处理好这些警告信息对于开发者来
recommend-type

不要用欧几里得算法实现

如果不用欧几里得算法来简化分数(即去除最大公约数),那么在计算除法时,结果可能会保留原始的分数形式,而不会变成最简分数。这通常不是我们希望看到的,因为在数学上,两个分数相除应该得到最简形式。 例如,如果我们直接计算 `4/5` 除以 `2/7` 的结果,不简化的话,我们会得到 `(4*7)/(5*2)`,最终结果将是 `28/10` 而不是 `14/5`。如果不处理这种情况,程序会变得不够简洁和实用。 以下是不使用欧几里得算法简化分数除法的部分代码修改: ```c // 除法 Fraction divide(Fraction a, Fraction b) { int result
recommend-type

吉林大学图形学与人机交互课程作业解析

资源摘要信息: "吉林大学图形学与人机交互作业" 吉林大学是中国知名的综合性研究型大学,其计算机科学与技术学院在图形学与人机交互领域具有深厚的学术积累和教学经验。图形学是计算机科学的一个分支,主要研究如何使用计算机来生成、处理、存储和显示图形信息,而人机交互则关注的是计算机与人类用户之间的交互方式和体验。吉林大学在这两门课程中,可能涉及到的知识点包括但不限于以下几个方面: 1. 计算机图形学基础:这部分内容可能涵盖图形学的基本概念,如图形的表示、图形的变换、图形的渲染、光照模型、纹理映射、阴影生成等。 2. 图形学算法:涉及二维和三维图形的算法,包括但不限于扫描转换算法、裁剪算法、几何变换算法、隐藏面消除算法等。 3. 实时图形学与图形管线:学习现代图形处理单元(GPU)如何工作,以及它们在实时渲染中的应用。图形管线概念涵盖了从应用程序创建几何图形到最终呈现在屏幕上的整个流程。 4. 着色器编程与效果实现:了解如何通过GLSL或HLSL等着色器语言来编写顶点着色器、片元着色器等,以实现复杂的视觉效果。 5. 人机交互设计原则:涉及交互设计的基本原则和理论框架,包括可用性、用户体验、交互模式、界面设计等。 6. 交互式图形系统:学习如何设计和实现交互式的图形系统,理解用户输入(如键盘、鼠标、触摸屏)与图形输出之间的交互。 7. 虚拟现实与增强现实:了解虚拟现实(VR)和增强现实(AR)技术的基础知识及其在人机交互中的应用。 8. 多媒体技术:研究多媒体技术在人机交互中的应用,包括图像、音频、视频等多媒体元素的处理与集成。 9. 交互技术的新发展:探索人工智能、机器学习、手势识别等新兴技术在人机交互领域的应用和趋势。 关于“CGWORK0406”这一压缩包子文件名称,可以理解为是吉林大学图形学与人机交互课程的作业文件包,其中可能包含具体的作业指导、参考资料、示例代码、实验数据、作业题目和要求等。学生需要根据文件包中提供的资源来完成相关的课程作业,这可能包括编程练习、理论分析、软件实现和实验报告等内容。 作为一项学术性任务,该作业文件可能要求学生运用所学的图形学理论知识和技能,通过实践来深化理解,同时也可能涉及创新思维的培养,鼓励学生在人机交互设计方面进行探索和实验。完成这些作业不仅有助于学生巩固课堂所学,还能在一定程度上提升他们在图形学领域的科研和工程实践能力。