% 加载数据 load ('D:\matlab1\mat\170.mat') % 数据预处理 XTrain = double(XTrain)/255; XTest = double(XTest)/255; YTrain = categorical(YTrain); % 选择迁移学习模型 Net = resnet50; numClasses = numel(categories(YTrain));如何划分数据集
时间: 2024-02-17 19:04:53 浏览: 63
matlab数据的读入和预处理
3星 · 编辑精心推荐
在上述代码中,数据集已经被加载并存储在 `XTrain`、`YTrain`、`XTest` 和 `YTest` 中。如果您需要对数据集进行划分,则可以使用 MATLAB 中的 `cvpartition` 函数。这个函数可以将数据集划分为特定数量的训练集和测试集,也可以将数据集划分为交叉验证的训练集和测试集。
以下是一个例子,将数据集划分为 70% 的训练集和 30% 的测试集:
```matlab
% 加载数据
load('D:\matlab1\mat\170.mat')
% 数据预处理
XTrain = double(XTrain)/255;
XTest = double(XTest)/255;
YTrain = categorical(YTrain);
% 划分数据集
pctTrain = 0.7; % 训练集的占比
cv = cvpartition(size(XTrain,1),'HoldOut',pctTrain);
idxTrain = cv.training;
idxTest = cv.test;
% 获取训练数据和标签
XTrain = XTrain(idxTrain,:);
YTrain = YTrain(idxTrain);
% 获取测试数据和标签
XTest = XTrain(idxTest,:);
YTest = YTrain(idxTest,:);
```
在上述代码中,我们使用 `cvpartition` 函数将数据集划分为训练集和测试集。我们指定了训练集的占比为 70%。然后,我们使用 `training` 和 `test` 方法获取训练集和测试集的索引。最后,我们使用这些索引从 `XTrain`、`YTrain`、`XTest` 和 `YTest` 中获取训练数据和标签以及测试数据和标签。
阅读全文