fgbg.apply(frame)什么意思

时间: 2024-05-20 13:13:51 浏览: 86
这段代码应该是使用了 Python 的 imutils 库中的函数,其中 fgbg 表示一个背景减法器 (Foreground Background Subtractor),apply() 方法用于将这个背景减法器应用到一个帧(frame)上,以便从当前帧中提取出前景对象。具体来说,这个函数会对当前帧和之前的帧进行比较,找出两帧之间的差异,将差异部分标记为前景对象,返回标记后的帧。
相关问题

fgmask = fgbg.apply(frame)

这行代码是利用背景减除算法将输入的视频帧(frame)和背景图像进行比较,得出前景掩码(fgmask)。其中fgbg是利用cv2.createBackgroundSubtractorMOG2()函数创建的背景减除器对象。通过该函数创建的背景减除器对象,可以对输入的视频帧进行背景建模,并计算出前景掩码。最后,利用前景掩码可以提取出视频帧中的前景物体。

import cv2 # 初始化背景建模器 fgbg = cv2.createBackgroundSubtractorMOG2() # 读取视频文件 cap = cv2.VideoCapture('w5.mp4') while True: # 读取一帧图像 ret, frame = cap.read() if not ret: break # 对图像进行背景建模 fgmask = fgbg.apply(frame) # 缩放比例 scale_percent = 50 # 计算缩放后的新尺寸 width = int(frame.shape[1] * scale_percent / 100) height = int(frame.shape[0] * scale_percent / 100) dim = (width, height) # 缩放图像 frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA) fgmask = cv2.resize(fgmask, dim, interpolation=cv2.INTER_AREA) # 对二值化结果进行形态学操作 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) # 寻找轮廓并绘制矩形框 contours, hierarchy = cv2.findContours(fgmask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: area = cv2.contourArea(contour) if area > 1500: # 去除过小的噪点 x, y, w, h = cv2.boundingRect(contour) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2) # 显示结果 cv2.imshow('frame', frame) cv2.imshow('fgmask', fgmask) if cv2.waitKey(30) == ord('q'): break # 释放资源 cap.release() cv2.destroyAllWindows()能给这段程序加一个目标跟踪吗

可以给这段程序加上目标跟踪。一种简单的方法是使用OpenCV的cv2.Tracker类。在循环中,可以使用cv2.Tracker类来跟踪检测到的目标。以下是修改后的代码示例: import cv2 # 初始化背景建模器 fgbg = cv2.createBackgroundSubtractorMOG2() # 读取视频文件 cap = cv2.VideoCapture('w5.mp4') # 初始化跟踪器 tracker = cv2.TrackerCSRT_create() while True: # 读取一帧图像 ret, frame = cap.read() if not ret: break # 对图像进行背景建模 fgmask = fgbg.apply(frame) # 缩放比例 scale_percent = 50 # 计算缩放后的新尺寸 width = int(frame.shape[1] * scale_percent / 100) height = int(frame.shape[0] * scale_percent / 100) dim = (width, height) # 缩放图像 frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA) fgmask = cv2.resize(fgmask, dim, interpolation=cv2.INTER_AREA) # 对二值化结果进行形态学操作 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) # 寻找轮廓并绘制矩形框 contours, hierarchy = cv2.findContours(fgmask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: area = cv2.contourArea(contour) if area > 1500: # 去除过小的噪点 x, y, w, h = cv2.boundingRect(contour) # 初始化跟踪器 bbox = (x, y, w, h) tracker.init(frame, bbox) # 更新跟踪器 success, bbox = tracker.update(frame) # 绘制矩形框 if success: x, y, w, h = [int(i) for i in bbox] cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2) # 显示结果 cv2.imshow('frame', frame) cv2.imshow('fgmask', fgmask) if cv2.waitKey(30) == ord('q'): break # 释放资源 cap.release() cv2.destroyAllWindows()
阅读全文

相关推荐

import cv2 # 创建混合高斯模型 fgbg = cv2.createBackgroundSubtractorMOG2(history=500, varThreshold=50, detectShadows=False) # 打开视频文件 cap = cv2.VideoCapture('t1.mp4') # 获取视频帧率、宽度和高度 fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 创建前景视频对象 fg_out = cv2.VideoWriter('foreground_video.avi', cv2.VideoWriter_fourcc(*'XVID'), fps, (width, height)) # 循环遍历视频帧 while True: ret, frame = cap.read() if not ret: break # 高斯模型背景减除法 fgmask = fgbg.apply(frame) # 缩放比例 scale_percent = 50 # 计算缩放后的新尺寸 width = int(frame.shape[1] * scale_percent / 100) height = int(frame.shape[0] * scale_percent / 100) dim = (width, height) # 缩放图像 frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA) fgmask = cv2.resize(fgmask, dim, interpolation=cv2.INTER_AREA) # 形态学开运算去除噪点 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) opening = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) # 寻找轮廓并计算周长 contours, hierarchy = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: perimeter = cv2.arcLength(cnt, True) if perimeter > 500: # 画出矩形框 x, y, w, h = cv2.boundingRect(cnt) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.imshow('frame', frame) cv2.imshow('fgmask', fgmask) if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放对象 cap.release() fg_out.release() cv2.destroyAllWindows()改这个程序,消除视频抖动的影响,不要用光流补偿

import cv2 import numpy as np # 创建混合高斯模型 fgbg = cv2.createBackgroundSubtractorMOG2(history=500, varThreshold=50, detectShadows=False) # 打开视频文件 cap = cv2.VideoCapture('t1.mp4') # 获取视频帧率、宽度和高度 fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 创建前景视频对象 fg_out = cv2.VideoWriter('foreground_video.avi', cv2.VideoWriter_fourcc(*'XVID'), fps, (width, height)) # 初始化上一帧 prev_frame = None # 循环遍历视频帧 while True: ret, frame = cap.read() if not ret: break # 高斯模型背景减除法 fgmask = fgbg.apply(frame) # 缩放比例 scale_percent = 50 # 计算缩放后的新尺寸 width = int(frame.shape[1] * scale_percent / 100) height = int(frame.shape[0] * scale_percent / 100) dim = (width, height) # 缩放图像 frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA) fgmask = cv2.resize(fgmask, dim, interpolation=cv2.INTER_AREA) # 形态学开运算去除噪点 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) opening = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) # 寻找轮廓并计算周长 contours, hierarchy = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: perimeter = cv2.arcLength(cnt, True) if perimeter > 500: # 画出矩形框 x, y, w, h = cv2.boundingRect(cnt) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) # 视频稳定 if prev_frame is not None: # 计算帧间差分 diff = cv2.absdiff(frame, prev_frame) # 计算运动向量 _, motion = cv2.optflow.calcOpticalFlowFarneback(prev_frame, frame, None, 0.5, 3, 15, 3, 5, 1.2, 0) # 平移每一帧 M = np.float32([[1, 0, motion[:,:,0].mean()], [0, 1, motion[:,:,1].mean()]]) frame = cv2.warpAffine(frame, M, (frame.shape[1], frame.shape[0])) diff = cv2.warpAffine(diff, M, (diff.shape[1], diff.shape[0])) # 显示帧间差分 cv2.imshow('diff', diff) # 更新上一帧 prev_frame = frame.copy() cv2.imshow('frame', frame) cv2.imshow('fgmask', fgmask) if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放对象 cap.release() fg_out.release() cv2.destroyAllWindows()改为4.5.3版本的opencv能用的程序

最新推荐

recommend-type

精细金属掩模板(FMM)行业研究报告 显示技术核心部件FMM材料产业分析与市场应用

精细金属掩模板(FMM)作为OLED蒸镀工艺中的核心消耗部件,负责沉积RGB有机物质形成像素。材料由Frame、Cover等五部分组成,需满足特定热膨胀性能。制作工艺包括蚀刻、电铸等,影响FMM性能。适用于显示技术研究人员、产业分析师,旨在提供FMM材料技术发展、市场规模及产业链结构的深入解析。
recommend-type

【创新未发表】斑马算法ZOA-Kmean-Transformer-LSTM负荷预测Matlab源码 9515期.zip

CSDN海神之光上传的全部代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:Main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2024b;若运行有误,根据提示修改;若不会,可私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开除Main.m的其他m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博主博客文章底部QQ名片; 4.1 CSDN博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 智能优化算法优化Kmean-Transformer-LSTM负荷预测系列程序定制或科研合作方向: 4.4.1 遗传算法GA/蚁群算法ACO优化Kmean-Transformer-LSTM负荷预测 4.4.2 粒子群算法PSO/蛙跳算法SFLA优化Kmean-Transformer-LSTM负荷预测 4.4.3 灰狼算法GWO/狼群算法WPA优化Kmean-Transformer-LSTM负荷预测 4.4.4 鲸鱼算法WOA/麻雀算法SSA优化Kmean-Transformer-LSTM负荷预测 4.4.5 萤火虫算法FA/差分算法DE优化Kmean-Transformer-LSTM负荷预测 4.4.6 其他优化算法优化Kmean-Transformer-LSTM负荷预测
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈

![【Java内存管理终极指南】:一次性解决内存溢出、泄漏和性能瓶颈](https://community.cloudera.com/t5/image/serverpage/image-id/31614iEBC942A7C6D4A6A1/image-size/large?v=v2&px=999) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. Java内存模型
recommend-type

c 语言return用法

在C语言中,`return`关键字用于结束函数的执行并返回一个值给函数调用者(如果函数声明了返回类型)。它的基本语法如下: ```c return_type function_name(parameters) { // 函数体内的代码 if (条件) { return value; // 可选的,直接返回一个特定值 } else { // 可能的计算后返回 result = some_computation(); return result; } } ``` 当`return`被执行时,控制权会立即从当前函数转移