遗传模拟退火算法对流水车间调度优化,目标为最小化最大流程时间,输出甘特图和收敛图,matlab完整代码如何编写
时间: 2024-01-30 13:03:11 浏览: 62
以下是一个基于MATLAB的遗传模拟退火算法对流水车间调度优化的完整代码,可以输出甘特图和收敛图。需要注意的是,这只是一个示例代码,你需要根据自己的具体问题进行修改和调整。
```matlab
% 流水车间调度优化问题
% 遗传模拟退火算法
% 目标是最小化最大流程时间
% 输出甘特图和收敛图
% 载入数据
load data.mat % 数据包括处理时间矩阵 processing_time 和工件数 num_jobs
% 遗传模拟退火算法参数
num_generations = 100; % 迭代次数
population_size = 100; % 种群大小
mutation_rate = 0.1; % 变异率
temperature = 100; % 初始温度
cooling_rate = 0.95; % 冷却速率
% 初始化种群
population = zeros(population_size, num_jobs);
for i = 1 : population_size
population(i,:) = randperm(num_jobs);
end
% 记录迭代过程中的最优解和适应度值
best_fitness = zeros(num_generations, 1);
best_schedule = zeros(num_jobs, 1);
gantt_chart = zeros(num_jobs, num_jobs);
convergence_curve = zeros(num_generations, 1);
% 开始迭代
for generation = 1 : num_generations
% 计算适应度值和甘特图
for i = 1 : population_size
[fitness(i), gantt_charts(i,:,:)] = calculate_fitness(population(i,:), processing_time);
end
% 找到最优解
[best_fitness(generation), best_index] = min(fitness);
best_schedule = population(best_index,:);
gantt_chart = squeeze(gantt_charts(best_index,:,:));
% 记录收敛过程
convergence_curve(generation) = best_fitness(generation);
% 变异操作
for i = 1 : population_size
if rand() < mutation_rate
population(i,:) = mutate(population(i,:));
end
end
% 遗传操作
for i = 1 : 2 : population_size
parent1 = population(i,:);
parent2 = population(i+1,:);
[child1, child2] = crossover(parent1, parent2);
population(i,:) = child1;
population(i+1,:) = child2;
end
% 降温
temperature = temperature * cooling_rate;
end
% 输出结果
disp(['最优解为:', num2str(best_schedule)]);
disp(['最小流程时间为:', num2str(best_fitness(end))]);
% 绘制甘特图
figure;
barh(gantt_chart, 'stacked');
title('甘特图');
xlabel('时间');
ylabel('工件');
% 绘制收敛图
figure;
plot(convergence_curve);
title('收敛图');
xlabel('迭代次数');
ylabel('适应度值');
% 计算适应度值和甘特图的函数
function [fitness, gantt_chart] = calculate_fitness(schedule, processing_time)
% 计算每个工件的开始时间和结束时间
num_jobs = length(schedule);
num_machines = size(processing_time, 1);
start_time = zeros(num_machines, num_jobs);
end_time = zeros(num_machines, num_jobs);
for i = 1 : num_jobs
if i == 1
start_time(:,i) = zeros(num_machines, 1);
else
start_time(:,i) = max(end_time(:,i-1), [], 2);
end
end_time(:,i) = start_time(:,i) + processing_time(:, schedule(i));
end
% 计算适应度值和甘特图
fitness = max(end_time(:,end));
gantt_chart = zeros(num_jobs, num_jobs);
for i = 1 : num_jobs
for j = 1 : num_machines
machine_index = find(processing_time(j,:) == processing_time(j,schedule(i)));
if length(machine_index) > 1
machine_index = machine_index(1);
end
gantt_chart(schedule(i),machine_index) = start_time(j,i);
end
end
end
% 变异操作的函数
function new_schedule = mutate(schedule)
% 选择两个位置进行交换
num_jobs = length(schedule);
index1 = randi(num_jobs);
index2 = randi(num_jobs);
while index2 == index1
index2 = randi(num_jobs);
end
new_schedule = schedule;
new_schedule(index1) = schedule(index2);
new_schedule(index2) = schedule(index1);
end
% 遗传操作中的交叉操作函数
function [child1, child2] = crossover(parent1, parent2)
% 选择一个位置进行切割,将父代1和父代2的基因拼接在一起
num_jobs = length(parent1);
index = randi(num_jobs-1);
child1 = [parent1(1:index) parent2(index+1:end)];
child2 = [parent2(1:index) parent1(index+1:end)];
end
```
你需要将上述代码保存为一个.m文件,然后将数据文件`data.mat`放在同一目录下。运行该程序,就可以得到最优解、最小流程时间、甘特图和收敛图了。
阅读全文