python实现将neo4j的知识图谱利用TransH嵌入方法转换成嵌入向量代码详细步骤
时间: 2024-03-07 07:52:08 浏览: 175
好的,下面是将neo4j的知识图谱利用TransH嵌入方法转换成嵌入向量的详细步骤:
1. 安装neo4j和py2neo
首先需要安装neo4j和py2neo,neo4j是一个图形数据库,py2neo是一个Python库,用于连接和操作neo4j数据库。
2. 加载知识图谱数据
使用py2neo连接neo4j数据库,并加载知识图谱数据。可以使用cypher语言来查询和修改neo4j数据库中的数据。
3. 数据预处理
对于TransH方法,需要将知识图谱中的实体和关系转换成嵌入向量。首先需要对实体和关系进行编号,例如使用字典将实体和关系编号映射成整数。
4. 定义模型
定义TransH模型,包括实体和关系的嵌入向量,以及TransH中的参数和损失函数。
5. 训练模型
使用知识图谱数据来训练TransH模型。可以使用梯度下降等优化算法来最小化损失函数,以更新模型参数。
6. 得到嵌入向量
使用训练好的TransH模型,得到每个实体和关系的嵌入向量。可以将这些嵌入向量保存到文件中,以便后续使用。
以上就是将neo4j的知识图谱利用TransH嵌入方法转换成嵌入向量的详细步骤。需要注意的是,这只是一个简单的流程,具体实现还需要根据实际情况进行调整和优化。
相关问题
python实现将neo4j的知识图谱利用TransH嵌入方法转换成嵌入向量代码并附有详细注释
好的,我可以为您提供Python实现将Neo4j的知识图谱利用TransH嵌入方法转换成嵌入向量的代码,并附有详细注释。在提供代码之前,需要先安装PyTorch和py2neo模块。
```python
import torch
from torch.utils.data import DataLoader
from py2neo import Graph, Node, Relationship
# 定义TransH模型
class TransH(torch.nn.Module):
def __init__(self, ent_num, rel_num, dim, margin):
super(TransH, self).__init__()
self.ent_num = ent_num
self.rel_num = rel_num
self.dim = dim
self.margin = margin
self.ent_embedding = torch.nn.Embedding(self.ent_num, self.dim)
self.rel_embedding = torch.nn.Embedding(self.rel_num, self.dim)
self.norm_vector = torch.nn.Embedding(self.rel_num, self.dim)
def _calc(self, h, t, r):
h = h.view(-1, self.dim, 1)
t = t.view(-1, self.dim, 1)
r = r.view(-1, self.dim, 1)
norm = torch.norm(r, p=2, dim=1, keepdim=True)
norm_r = r / norm
norm_h = torch.matmul(h, norm_r.transpose(1,2))
norm_t = torch.matmul(t, norm_r.transpose(1,2))
score = torch.norm(norm_h + r - norm_t, p=2, dim=1)
return score
def forward(self, pos_h, pos_t, pos_r, neg_h, neg_t, neg_r):
pos_score = self._calc(pos_h, pos_t, pos_r)
neg_score = self._calc(neg_h, neg_t, neg_r)
loss_func = torch.nn.MarginRankingLoss(margin=self.margin)
y = torch.Tensor([-1])
loss = loss_func(pos_score, neg_score, y)
return loss
def ent_embeddings(self):
return self.ent_embedding.weight.detach().cpu().numpy()
# 加载知识图谱数据
class KnowledgeGraphDataLoader(DataLoader):
def __init__(self, graph, batch_size, num_workers):
self.graph = graph
self.batch_size = batch_size
self.num_workers = num_workers
self.ent2id = {}
self.rel2id = {}
self.id2ent = {}
self.id2rel = {}
self.train_triples = []
self.dev_triples = []
self.test_triples = []
self.load_data()
# 加载数据
def load_data(self):
query = "MATCH (h)-[r]->(t) RETURN id(h), id(t), type(r)"
result = self.graph.run(query)
for row in result:
h, t, r = row
if h not in self.ent2id:
self.ent2id[h] = len(self.ent2id)
self.id2ent[self.ent2id[h]] = h
if t not in self.ent2id:
self.ent2id[t] = len(self.ent2id)
self.id2ent[self.ent2id[t]] = t
if r not in self.rel2id:
self.rel2id[r] = len(self.rel2id)
self.id2rel[self.rel2id[r]] = r
self.train_triples.append((self.ent2id[h], self.ent2id[t], self.rel2id[r]))
# 获取训练数据
def get_train_data(self):
return self.train_triples
# 获取实体数量
def get_ent_num(self):
return len(self.ent2id)
# 获取关系数量
def get_rel_num(self):
return len(self.rel2id)
# 获取实体ID
def get_ent_id(self, ent):
return self.ent2id[ent]
# 获取关系ID
def get_rel_id(self, rel):
return self.rel2id[rel]
# 获取实体
def get_ent(self, ent_id):
return self.id2ent[ent_id]
# 获取关系
def get_rel(self, rel_id):
return self.id2rel[rel_id]
# 训练TransH模型
def train_transh(graph, dim=50, margin=1.0, lr=0.01, batch_size=1000, epochs=500, num_workers=8):
data_loader = KnowledgeGraphDataLoader(graph, batch_size, num_workers)
ent_num = data_loader.get_ent_num()
rel_num = data_loader.get_rel_num()
transh = TransH(ent_num, rel_num, dim, margin)
optimizer = torch.optim.SGD(transh.parameters(), lr=lr)
transh.train()
for epoch in range(epochs):
data_iter = DataLoader(data_loader, batch_size=batch_size, shuffle=True, num_workers=num_workers)
for batch in data_iter:
pos_h, pos_t, pos_r = torch.LongTensor(batch[:, 0]), torch.LongTensor(batch[:, 1]), torch.LongTensor(batch[:, 2])
neg_h, neg_t, neg_r = data_loader.get_corrupted_triples(pos_h, pos_t, pos_r)
loss = transh(pos_h, pos_t, pos_r, neg_h, neg_t, neg_r)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, loss.item()))
return transh.ent_embeddings()
# 连接Neo4j数据库
graph = Graph("bolt://localhost:7687", auth=('neo4j', 'password'))
# 训练TransH模型
ent_embeddings = train_transh(graph, dim=50, margin=1.0, lr=0.01, batch_size=1000, epochs=500, num_workers=8)
# 保存实体嵌入向量
for ent_id in range(len(ent_embeddings)):
ent = data_loader.get_ent(ent_id)
node = Node("Entity", name=ent, embedding=ent_embeddings[ent_id])
graph.create(node)
```
以上代码实现了将Neo4j的知识图谱利用TransH嵌入方法转换成嵌入向量,并将实体嵌入向量保存到Neo4j数据库中。其中,TransH模型的训练过程采用随机梯度下降算法,优化器使用SGD,损失函数采用MarginRankingLoss,训练过程中使用了多线程加载数据。由于每个实体的嵌入向量是一个向量,因此使用了Neo4j的属性来保存实体嵌入向量。
python实现将neo4j的知识图谱利用TransH嵌入方法转换成嵌入向量
以下是基于 PyTorch 实现的 TransH 算法,可以将 Neo4j 的知识图谱转换成嵌入向量:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.autograd import Variable
from tqdm import tqdm
from py2neo import Graph
# 定义 TransH 模型
class TransH(nn.Module):
def __init__(self, entity_num, relation_num, dim, margin=1.0):
super(TransH, self).__init__()
self.entity_num = entity_num
self.relation_num = relation_num
self.dim = dim
self.margin = margin
# 定义实体、关系、映射矩阵
self.entity_embeddings = nn.Embedding(entity_num, dim)
self.relation_embeddings = nn.Embedding(relation_num, dim)
self.projection_matrix = nn.Embedding(relation_num, dim * dim)
def forward(self, head, relation, tail):
# 获取实体、关系、映射矩阵的向量表示
head_emb = self.entity_embeddings(head)
relation_emb = self.relation_embeddings(relation)
tail_emb = self.entity_embeddings(tail)
proj_mat = self.projection_matrix(relation)
# 将向量表示转换成矩阵表示
head_mat = head_emb.view(-1, 1, self.dim)
tail_mat = tail_emb.view(-1, 1, self.dim)
proj_mat = proj_mat.view(-1, self.dim, self.dim)
# 计算 TransH 中的映射向量
head_proj_mat = torch.matmul(head_mat, proj_mat)
tail_proj_mat = torch.matmul(tail_mat, proj_mat)
head_proj_vec = head_proj_mat.view(-1, self.dim)
tail_proj_vec = tail_proj_mat.view(-1, self.dim)
# 计算 TransH 中的距离函数
dist = torch.norm(head_proj_vec + relation_emb - tail_proj_vec, p=2, dim=1)
return dist
# 定义 TransH 中的 margin loss
def margin_loss(self, pos_dist, neg_dist):
loss = torch.sum(torch.max(pos_dist - neg_dist + self.margin, torch.zeros_like(pos_dist)))
return loss
# 定义训练函数
def train(model, train_data, optimizer, batch_size, margin):
# 将数据集分成若干个 batch
batch_num = (len(train_data) - 1) // batch_size + 1
np.random.shuffle(train_data)
total_loss = 0.0
for i in tqdm(range(batch_num)):
start_idx = i * batch_size
end_idx = min((i + 1) * batch_size, len(train_data))
batch_data = train_data[start_idx:end_idx]
head = torch.LongTensor(batch_data[:, 0])
relation = torch.LongTensor(batch_data[:, 1])
tail = torch.LongTensor(batch_data[:, 2])
neg_head = torch.LongTensor(batch_data[:, 3])
neg_tail = torch.LongTensor(batch_data[:, 4])
# 将数据转移到 GPU 上
if torch.cuda.is_available():
model.cuda()
head = head.cuda()
relation = relation.cuda()
tail = tail.cuda()
neg_head = neg_head.cuda()
neg_tail = neg_tail.cuda()
# 计算正样本和负样本的距离
pos_dist = model(head, relation, tail)
neg_dist = model(neg_head, relation, neg_tail)
# 计算 margin loss 并进行反向传播
loss = model.margin_loss(pos_dist, neg_dist)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.data.cpu().numpy()
return total_loss / batch_num
# 定义 TransH 算法的训练过程
def transh_train(entity_list, relation_list, triple_list, dim, lr=0.001, margin=1.0, batch_size=1024, epoch=100):
# 初始化模型和优化器
entity2id = {entity: idx for idx, entity in enumerate(entity_list)}
relation2id = {relation: idx for idx, relation in enumerate(relation_list)}
model = TransH(len(entity2id), len(relation2id), dim, margin=margin)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
# 将三元组转换成训练数据
train_data = []
for head, relation, tail in triple_list:
if head not in entity2id or tail not in entity2id or relation not in relation2id:
continue
head_id = entity2id[head]
tail_id = entity2id[tail]
relation_id = relation2id[relation]
train_data.append([head_id, relation_id, tail_id])
# 开始训练
for i in range(epoch):
loss = train(model, train_data, optimizer, batch_size, margin)
print("Epoch %d: loss=%.4f" % (i + 1, loss))
# 返回实体的嵌入向量
entity_embeddings = model.entity_embeddings.weight.data.cpu().numpy()
return entity_embeddings
# 连接 Neo4j 数据库并查询数据
graph = Graph(host="localhost", http_port=7474, user="neo4j", password="password")
result = graph.run("MATCH (n)-[r]->(m) RETURN n.name, r.name, m.name").data()
# 提取实体、关系和三元组列表
entity_list = list(set([item['n.name'] for item in result] + [item['m.name'] for item in result]))
relation_list = list(set([item['r.name'] for item in result]))
triple_list = [[item['n.name'], item['r.name'], item['m.name']] for item in result]
# 使用 TransH 算法将知识图谱转换成嵌入向量
entity_embeddings = transh_train(entity_list, relation_list, triple_list, dim=50, lr=0.01, margin=1.0, batch_size=1024, epoch=100)
# 保存实体嵌入向量
np.savetxt("entity_embeddings.txt", entity_embeddings, delimiter=",")
```
其中,`TransH` 类定义了 TransH 模型,包括实体嵌入矩阵、关系嵌入矩阵和映射矩阵,并实现了前向传播和 margin loss 函数。`train` 函数定义了模型的训练过程,包括将数据集分成若干个 batch,计算正负样本的距离和 margin loss,并进行反向传播。`transh_train` 函数定义了 TransH 算法的训练过程,包括将三元组转换成训练数据,初始化模型和优化器,并开始训练。最后将实体嵌入矩阵保存到文件中。
你需要根据自己的数据集和需求,修改代码中的参数和超参数,例如嵌入维度、学习率、margin、batch_size 和 epoch 等。
阅读全文