python实现将neo4j的知识图谱利用TransH嵌入方法转换成嵌入向量代码详细步骤

时间: 2024-03-07 07:52:08 浏览: 175
好的,下面是将neo4j的知识图谱利用TransH嵌入方法转换成嵌入向量的详细步骤: 1. 安装neo4j和py2neo 首先需要安装neo4j和py2neo,neo4j是一个图形数据库,py2neo是一个Python库,用于连接和操作neo4j数据库。 2. 加载知识图谱数据 使用py2neo连接neo4j数据库,并加载知识图谱数据。可以使用cypher语言来查询和修改neo4j数据库中的数据。 3. 数据预处理 对于TransH方法,需要将知识图谱中的实体和关系转换成嵌入向量。首先需要对实体和关系进行编号,例如使用字典将实体和关系编号映射成整数。 4. 定义模型 定义TransH模型,包括实体和关系的嵌入向量,以及TransH中的参数和损失函数。 5. 训练模型 使用知识图谱数据来训练TransH模型。可以使用梯度下降等优化算法来最小化损失函数,以更新模型参数。 6. 得到嵌入向量 使用训练好的TransH模型,得到每个实体和关系的嵌入向量。可以将这些嵌入向量保存到文件中,以便后续使用。 以上就是将neo4j的知识图谱利用TransH嵌入方法转换成嵌入向量的详细步骤。需要注意的是,这只是一个简单的流程,具体实现还需要根据实际情况进行调整和优化。
相关问题

python实现将neo4j的知识图谱利用TransH嵌入方法转换成嵌入向量代码并附有详细注释

好的,我可以为您提供Python实现将Neo4j的知识图谱利用TransH嵌入方法转换成嵌入向量的代码,并附有详细注释。在提供代码之前,需要先安装PyTorch和py2neo模块。 ```python import torch from torch.utils.data import DataLoader from py2neo import Graph, Node, Relationship # 定义TransH模型 class TransH(torch.nn.Module): def __init__(self, ent_num, rel_num, dim, margin): super(TransH, self).__init__() self.ent_num = ent_num self.rel_num = rel_num self.dim = dim self.margin = margin self.ent_embedding = torch.nn.Embedding(self.ent_num, self.dim) self.rel_embedding = torch.nn.Embedding(self.rel_num, self.dim) self.norm_vector = torch.nn.Embedding(self.rel_num, self.dim) def _calc(self, h, t, r): h = h.view(-1, self.dim, 1) t = t.view(-1, self.dim, 1) r = r.view(-1, self.dim, 1) norm = torch.norm(r, p=2, dim=1, keepdim=True) norm_r = r / norm norm_h = torch.matmul(h, norm_r.transpose(1,2)) norm_t = torch.matmul(t, norm_r.transpose(1,2)) score = torch.norm(norm_h + r - norm_t, p=2, dim=1) return score def forward(self, pos_h, pos_t, pos_r, neg_h, neg_t, neg_r): pos_score = self._calc(pos_h, pos_t, pos_r) neg_score = self._calc(neg_h, neg_t, neg_r) loss_func = torch.nn.MarginRankingLoss(margin=self.margin) y = torch.Tensor([-1]) loss = loss_func(pos_score, neg_score, y) return loss def ent_embeddings(self): return self.ent_embedding.weight.detach().cpu().numpy() # 加载知识图谱数据 class KnowledgeGraphDataLoader(DataLoader): def __init__(self, graph, batch_size, num_workers): self.graph = graph self.batch_size = batch_size self.num_workers = num_workers self.ent2id = {} self.rel2id = {} self.id2ent = {} self.id2rel = {} self.train_triples = [] self.dev_triples = [] self.test_triples = [] self.load_data() # 加载数据 def load_data(self): query = "MATCH (h)-[r]->(t) RETURN id(h), id(t), type(r)" result = self.graph.run(query) for row in result: h, t, r = row if h not in self.ent2id: self.ent2id[h] = len(self.ent2id) self.id2ent[self.ent2id[h]] = h if t not in self.ent2id: self.ent2id[t] = len(self.ent2id) self.id2ent[self.ent2id[t]] = t if r not in self.rel2id: self.rel2id[r] = len(self.rel2id) self.id2rel[self.rel2id[r]] = r self.train_triples.append((self.ent2id[h], self.ent2id[t], self.rel2id[r])) # 获取训练数据 def get_train_data(self): return self.train_triples # 获取实体数量 def get_ent_num(self): return len(self.ent2id) # 获取关系数量 def get_rel_num(self): return len(self.rel2id) # 获取实体ID def get_ent_id(self, ent): return self.ent2id[ent] # 获取关系ID def get_rel_id(self, rel): return self.rel2id[rel] # 获取实体 def get_ent(self, ent_id): return self.id2ent[ent_id] # 获取关系 def get_rel(self, rel_id): return self.id2rel[rel_id] # 训练TransH模型 def train_transh(graph, dim=50, margin=1.0, lr=0.01, batch_size=1000, epochs=500, num_workers=8): data_loader = KnowledgeGraphDataLoader(graph, batch_size, num_workers) ent_num = data_loader.get_ent_num() rel_num = data_loader.get_rel_num() transh = TransH(ent_num, rel_num, dim, margin) optimizer = torch.optim.SGD(transh.parameters(), lr=lr) transh.train() for epoch in range(epochs): data_iter = DataLoader(data_loader, batch_size=batch_size, shuffle=True, num_workers=num_workers) for batch in data_iter: pos_h, pos_t, pos_r = torch.LongTensor(batch[:, 0]), torch.LongTensor(batch[:, 1]), torch.LongTensor(batch[:, 2]) neg_h, neg_t, neg_r = data_loader.get_corrupted_triples(pos_h, pos_t, pos_r) loss = transh(pos_h, pos_t, pos_r, neg_h, neg_t, neg_r) optimizer.zero_grad() loss.backward() optimizer.step() print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, epochs, loss.item())) return transh.ent_embeddings() # 连接Neo4j数据库 graph = Graph("bolt://localhost:7687", auth=('neo4j', 'password')) # 训练TransH模型 ent_embeddings = train_transh(graph, dim=50, margin=1.0, lr=0.01, batch_size=1000, epochs=500, num_workers=8) # 保存实体嵌入向量 for ent_id in range(len(ent_embeddings)): ent = data_loader.get_ent(ent_id) node = Node("Entity", name=ent, embedding=ent_embeddings[ent_id]) graph.create(node) ``` 以上代码实现了将Neo4j的知识图谱利用TransH嵌入方法转换成嵌入向量,并将实体嵌入向量保存到Neo4j数据库中。其中,TransH模型的训练过程采用随机梯度下降算法,优化器使用SGD,损失函数采用MarginRankingLoss,训练过程中使用了多线程加载数据。由于每个实体的嵌入向量是一个向量,因此使用了Neo4j的属性来保存实体嵌入向量。

python实现将neo4j的知识图谱利用TransH嵌入方法转换成嵌入向量

以下是基于 PyTorch 实现的 TransH 算法,可以将 Neo4j 的知识图谱转换成嵌入向量: ```python import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from torch.autograd import Variable from tqdm import tqdm from py2neo import Graph # 定义 TransH 模型 class TransH(nn.Module): def __init__(self, entity_num, relation_num, dim, margin=1.0): super(TransH, self).__init__() self.entity_num = entity_num self.relation_num = relation_num self.dim = dim self.margin = margin # 定义实体、关系、映射矩阵 self.entity_embeddings = nn.Embedding(entity_num, dim) self.relation_embeddings = nn.Embedding(relation_num, dim) self.projection_matrix = nn.Embedding(relation_num, dim * dim) def forward(self, head, relation, tail): # 获取实体、关系、映射矩阵的向量表示 head_emb = self.entity_embeddings(head) relation_emb = self.relation_embeddings(relation) tail_emb = self.entity_embeddings(tail) proj_mat = self.projection_matrix(relation) # 将向量表示转换成矩阵表示 head_mat = head_emb.view(-1, 1, self.dim) tail_mat = tail_emb.view(-1, 1, self.dim) proj_mat = proj_mat.view(-1, self.dim, self.dim) # 计算 TransH 中的映射向量 head_proj_mat = torch.matmul(head_mat, proj_mat) tail_proj_mat = torch.matmul(tail_mat, proj_mat) head_proj_vec = head_proj_mat.view(-1, self.dim) tail_proj_vec = tail_proj_mat.view(-1, self.dim) # 计算 TransH 中的距离函数 dist = torch.norm(head_proj_vec + relation_emb - tail_proj_vec, p=2, dim=1) return dist # 定义 TransH 中的 margin loss def margin_loss(self, pos_dist, neg_dist): loss = torch.sum(torch.max(pos_dist - neg_dist + self.margin, torch.zeros_like(pos_dist))) return loss # 定义训练函数 def train(model, train_data, optimizer, batch_size, margin): # 将数据集分成若干个 batch batch_num = (len(train_data) - 1) // batch_size + 1 np.random.shuffle(train_data) total_loss = 0.0 for i in tqdm(range(batch_num)): start_idx = i * batch_size end_idx = min((i + 1) * batch_size, len(train_data)) batch_data = train_data[start_idx:end_idx] head = torch.LongTensor(batch_data[:, 0]) relation = torch.LongTensor(batch_data[:, 1]) tail = torch.LongTensor(batch_data[:, 2]) neg_head = torch.LongTensor(batch_data[:, 3]) neg_tail = torch.LongTensor(batch_data[:, 4]) # 将数据转移到 GPU 上 if torch.cuda.is_available(): model.cuda() head = head.cuda() relation = relation.cuda() tail = tail.cuda() neg_head = neg_head.cuda() neg_tail = neg_tail.cuda() # 计算正样本和负样本的距离 pos_dist = model(head, relation, tail) neg_dist = model(neg_head, relation, neg_tail) # 计算 margin loss 并进行反向传播 loss = model.margin_loss(pos_dist, neg_dist) optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.data.cpu().numpy() return total_loss / batch_num # 定义 TransH 算法的训练过程 def transh_train(entity_list, relation_list, triple_list, dim, lr=0.001, margin=1.0, batch_size=1024, epoch=100): # 初始化模型和优化器 entity2id = {entity: idx for idx, entity in enumerate(entity_list)} relation2id = {relation: idx for idx, relation in enumerate(relation_list)} model = TransH(len(entity2id), len(relation2id), dim, margin=margin) optimizer = torch.optim.Adam(model.parameters(), lr=lr) # 将三元组转换成训练数据 train_data = [] for head, relation, tail in triple_list: if head not in entity2id or tail not in entity2id or relation not in relation2id: continue head_id = entity2id[head] tail_id = entity2id[tail] relation_id = relation2id[relation] train_data.append([head_id, relation_id, tail_id]) # 开始训练 for i in range(epoch): loss = train(model, train_data, optimizer, batch_size, margin) print("Epoch %d: loss=%.4f" % (i + 1, loss)) # 返回实体的嵌入向量 entity_embeddings = model.entity_embeddings.weight.data.cpu().numpy() return entity_embeddings # 连接 Neo4j 数据库并查询数据 graph = Graph(host="localhost", http_port=7474, user="neo4j", password="password") result = graph.run("MATCH (n)-[r]->(m) RETURN n.name, r.name, m.name").data() # 提取实体、关系和三元组列表 entity_list = list(set([item['n.name'] for item in result] + [item['m.name'] for item in result])) relation_list = list(set([item['r.name'] for item in result])) triple_list = [[item['n.name'], item['r.name'], item['m.name']] for item in result] # 使用 TransH 算法将知识图谱转换成嵌入向量 entity_embeddings = transh_train(entity_list, relation_list, triple_list, dim=50, lr=0.01, margin=1.0, batch_size=1024, epoch=100) # 保存实体嵌入向量 np.savetxt("entity_embeddings.txt", entity_embeddings, delimiter=",") ``` 其中,`TransH` 类定义了 TransH 模型,包括实体嵌入矩阵、关系嵌入矩阵和映射矩阵,并实现了前向传播和 margin loss 函数。`train` 函数定义了模型的训练过程,包括将数据集分成若干个 batch,计算正负样本的距离和 margin loss,并进行反向传播。`transh_train` 函数定义了 TransH 算法的训练过程,包括将三元组转换成训练数据,初始化模型和优化器,并开始训练。最后将实体嵌入矩阵保存到文件中。 你需要根据自己的数据集和需求,修改代码中的参数和超参数,例如嵌入维度、学习率、margin、batch_size 和 epoch 等。
阅读全文

相关推荐

zip
知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码 知识图谱项目 可用于毕业设计、课程设计、项目实践,提供设计资料+源码

最新推荐

recommend-type

Python使用py2neo操作图数据库neo4j的方法详解

本篇文章将深入探讨如何使用Python通过py2neo库与Neo4j进行交互,包括基本概念、Neo4j数据库的安装配置以及py2neo的使用方法。 首先,我们来看图数据库的基本概念。图(Graph)是由节点(Nodes)和它们之间的边...
recommend-type

如何在网页前端里可视化你的知识图谱

在网页前端实现知识图谱的可视化,是一种将复杂数据结构以直观图形展示的方式,便于用户理解和探索信息。本文主要介绍了如何使用Echarts这个流行的前端图表库来创建一个知识图谱的示例。以下是对实现这一功能的详细...
recommend-type

20190313-100538-非对称电容在变压器油中10kv高压电作用下产生力的现象

这个实验展示了非对称电容在高压电场中出现的力学现象。 非对称电容悬挂在悬臂梁传感器上,变压器油保持了两极的绝缘良好,高压产生的力的效应使得传感器测量的非对称电容的重量减轻。 这个实验有力的驳斥了用于解释非对称电容力学现象的离子风假说。 实验使用设备为STM32F429+HX711+悬臂梁传感器,上位机由C# WPF实现。
recommend-type

基于以太坊区块链的车险理赔系统全部资料+详细文档.zip

【资源说明】 基于以太坊区块链的车险理赔系统全部资料+详细文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依