efficientnet迁移至语义分割的pytorch代码,附中文注释
时间: 2023-11-20 22:05:11 浏览: 280
semseg:pytorch中的语义分割
以下是 efficientnet 迁移至语义分割的 PyTorch 代码,带有中文注释:
```python
import torch
import torch.nn as nn
from efficientnet_pytorch import EfficientNet
class ConvBlock(nn.Module):
# 定义卷积块
def __init__(self, in_ch, out_ch):
super(ConvBlock, self).__init__()
self.conv = nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1)
self.bn = nn.BatchNorm2d(out_ch)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class DecoderBlock(nn.Module):
# 定义解码块
def __init__(self, in_ch, out_ch):
super(DecoderBlock, self).__init__()
self.conv1 = nn.Conv2d(in_ch, in_ch // 4, kernel_size=1, stride=1)
self.bn1 = nn.BatchNorm2d(in_ch // 4)
self.relu1 = nn.ReLU(inplace=True)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv2 = ConvBlock(in_ch // 4, out_ch)
def forward(self, x, e):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.upsample(x)
x = torch.cat([x, e], dim=1)
x = self.conv2(x)
return x
class EfficientUNet(nn.Module):
# 定义 EfficientUNet 模型
def __init__(self, num_classes):
super(EfficientUNet, self).__init__()
self.encoder = EfficientNet.from_pretrained('efficientnet-b0')
self.conv1 = ConvBlock(320, 256)
self.conv2 = ConvBlock(192, 128)
self.conv3 = ConvBlock(112, 64)
self.conv4 = ConvBlock(40, 32)
self.center = DecoderBlock(1280, 512)
self.dec5 = DecoderBlock(512 + 320, 256)
self.dec6 = DecoderBlock(256 + 192, 128)
self.dec7 = DecoderBlock(128 + 112, 64)
self.dec8 = DecoderBlock(64 + 40, 32)
self.final_conv = nn.Conv2d(32, num_classes, kernel_size=1)
def forward(self, x):
# 编码器部分
x1 = self.encoder.extract_features(x)
x2 = self.encoder._swish(self.encoder._bn1(self.encoder._conv_head(x1)))
x3 = self.encoder._swish(self.encoder._bn2(self.encoder._conv_stem(x2)))
x4 = self.encoder._swish(self.encoder._bn3(self.encoder._blocks[0](x3)))
x5 = self.encoder._swish(self.encoder._bn4(self.encoder._blocks[1](x4)))
x6 = self.encoder._swish(self.encoder._bn5(self.encoder._blocks[2](x5)))
x7 = self.encoder._swish(self.encoder._bn6(self.encoder._blocks[3](x6)))
x8 = self.encoder._swish(self.encoder._bn7(self.encoder._blocks[4](x7)))
x9 = self.encoder._swish(self.encoder._bn8(self.encoder._conv_head(x8)))
# 解码器部分
x = self.center(x9)
x = self.dec5(x, x8)
x = self.dec6(x, x7)
x = self.dec7(x, x6)
x = self.dec8(x, x4)
out = self.final_conv(x)
return out
```
此代码将 EfficientNet 模型迁移至语义分割任务中,使用了 U-Net 结构。其中 `ConvBlock` 和 `DecoderBlock` 分别定义了卷积块和解码块,`EfficientUNet` 则定义了整个网络结构。在 `EfficientUNet` 中,首先使用 EfficientNet 作为编码器,然后使用 `DecoderBlock` 将编码器输出的特征图进行解码。最后使用一个卷积层将解码后的特征图输出为语义分割结果。
阅读全文