def __init__(self, inplanes, planes, stride=1, downsample=None)
时间: 2024-06-05 16:13:01 浏览: 87
该函数是一个类的初始化函数,用于初始化类中的实例变量。具体参数说明如下:
- inplanes: 输入特征图的通道数。
- planes: 输出特征图的通道数。
- stride: 卷积的步长,默认为1。
- downsample: 下采样层的操作,用于降低维度。如果downsample为None,则不做下采样操作。
该函数通常被用于定义卷积神经网络中的卷积层或者残差块。在该函数中会定义卷积层的输入通道数、输出通道数、卷积核大小、步长等参数,并使用这些参数初始化卷积层中的权重和偏置。同时也会定义下采样层的操作,用于将输入特征图的维度降低,从而减少计算量。
相关问题
class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, rate=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=rate, dilation=rate, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride解释
这段代码定义了一个 ResNet 中的 Bottleneck 模块,它是由三个卷积层组成的。第一个卷积层使用 1x1 的卷积核将输入通道数 inplanes 转换为 planes,第二个卷积层使用 3x3 的卷积核进行卷积操作,并且可能会进行下采样操作,stride 控制下采样的步长,padding 和 dilation 分别控制了卷积核在空间维度上的填充和空洞卷积操作。第三个卷积层使用 1x1 的卷积核将输出通道数转换为 planes*4,expansion 参数控制了扩张倍数。每个卷积层后面都跟着一个 BatchNorm 层和 ReLU 激活函数。downsample 参数用于进行下采样操作,stride 控制下采样的步长。这个模块的主要作用是提取特征,并且通过下采样操作进行特征压缩。
代码解析: class BasicBlock(nn.Layer): expansion = 1 def init(self, in_channels, channels, stride=1, downsample=None): super().init() self.conv1 = conv1x1(in_channels, channels) self.bn1 = nn.BatchNorm2D(channels) self.relu = nn.ReLU() self.conv2 = conv3x3(channels, channels, stride) self.bn2 = nn.BatchNorm2D(channels) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet45(nn.Layer): def init(self, in_channels=3, block=BasicBlock, layers=[3, 4, 6, 6, 3], strides=[2, 1, 2, 1, 1]): self.inplanes = 32 super(ResNet45, self).init() self.conv1 = nn.Conv2D( in_channels, 32, kernel_size=3, stride=1, padding=1, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False) self.bn1 = nn.BatchNorm2D(32) self.relu = nn.ReLU() self.layer1 = self._make_layer(block, 32, layers[0], stride=strides[0]) self.layer2 = self._make_layer(block, 64, layers[1], stride=strides[1]) self.layer3 = self._make_layer(block, 128, layers[2], stride=strides[2]) self.layer4 = self._make_layer(block, 256, layers[3], stride=strides[3]) self.layer5 = self._make_layer(block, 512, layers[4], stride=strides[4]) self.out_channels = 512 def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: # downsample = True downsample = nn.Sequential( nn.Conv2D( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, weight_attr=ParamAttr(initializer=KaimingNormal()), bias_attr=False), nn.BatchNorm2D(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.layer5(x) return x
这是一个 PyTorch 实现的 ResNet 模型,包括 BasicBlock 类和 ResNet45 类。
BasicBlock 类是 ResNet 中的基本模块,由两个卷积层和一个残差连接组成。expansion=1 表示残差连接的扩张率为 1。输入特征图 x 通过 conv1、bn1、relu、conv2、bn2、残差连接和 relu 激活函数后得到输出特征图 out。
ResNet45 类继承自 nn.Layer 类,包含了 ResNet45 模型的结构。该模型包含五个阶段,每个阶段包含若干 BasicBlock 模块。输入特征图先经过一个卷积层、bn1 和 relu 激活函数,然后进入五个阶段,最后输出特征图 x。每个阶段中的 BasicBlock 模块数量由 layers 参数指定,步长由 strides 参数指定。_make_layer 方法用于构建一个阶段,其中 planes 参数表示输出特征图的通道数,stride 参数表示步长。如果步长不为 1 或输入输出特征图通道数不同时,需要进行下采样,即 downsample,downsample 是一个包含 Conv2D 和 BatchNorm2D 的序列。
这个模型的输出特征图通道数为 512,可以用于分类、检测、分割等任务。
阅读全文