我现在给你提供一个思路,你重新完成代码,先用分治,然后任何反等差数列乘以2仍然是反等差数列,2n+1也会是反等差数列,之后进行递归
时间: 2024-09-14 07:13:39 浏览: 40
了解您的想法,我们可以使用分治策略来构造反等差数列,然后再将这些数列进行相应的调整以保持其性质。下面是一个基于这个思路的Python代码实现:
```python
def is_equidistant_sequence(arr):
if len(arr) <= 2:
return True
diff = arr[1] - arr[0]
for i in range(2, len(arr)):
if arr[i] - arr[i - 1] != diff:
return False
return True
def construct_equidistant_sequence(n, start=0):
if n <= 1:
return [start]
mid = n // 2
left = construct_equidistant_sequence(mid, start)
right = construct_equidistant_sequence(n - mid, start + mid)
# 合并左右两部分,同时考虑乘以2和翻转操作
if n % 2 == 1:
return left + [left[-1] + 2*diff] + list(reversed(right)) # 假设diff = left[-1] - left[-2]
else:
return left + list(reversed(right))
def generate_antidifference_sequences(n):
sequences = []
for seq in construct_equidistant_sequence(2*n + 1):
# 对反等差数列乘以2,得到新的反等差数列
doubled_seq = [2*x for x in seq]
if is_equidistant_sequence(doubled_seq):
sequences.append(' '.join(map(str, doubled_seq)))
return sequences
def main():
n = int(input())
while n > 0:
result = generate_antidifference_sequences(n)
print(f"{n}: {result[0]}") # 输出第一个反等差数列
n = int(input())
if __name__ == "__main__":
main()
阅读全文