用pytorch实现mnist手写数字识别,并给出代码和注释,尽量详细
时间: 2023-03-25 16:01:02 浏览: 134
详解PyTorch手写数字识别(MNIST数据集)
5星 · 资源好评率100%
好的,我可以回答这个问题。以下是用 PyTorch 实现 MNIST 手写数字识别的代码和注释:
首先,我们需要导入必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
```
然后,我们定义一些超参数:
```python
batch_size = 64
learning_rate = .01
num_epochs = 10
```
接着,我们定义数据预处理的方法:
```python
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((.1307,), (.3081,))
])
```
这里我们使用了 `transforms.ToTensor()` 将图像转换为张量,并使用 `transforms.Normalize()` 对张量进行归一化处理。
接下来,我们加载 MNIST 数据集:
```python
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform, download=True)
```
然后,我们使用 `DataLoader` 将数据集转换为可迭代的数据加载器:
```python
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
```
接下来,我们定义一个简单的卷积神经网络模型:
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2))
x = nn.functional.relu(nn.functional.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = nn.functional.relu(self.fc1(x))
x = self.fc2(x)
return nn.functional.log_softmax(x, dim=1)
```
这里我们使用了两个卷积层和两个全连接层。
接下来,我们定义损失函数和优化器:
```python
model = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
```
然后,我们开始训练模型:
```python
for epoch in range(num_epochs):
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == :
print('Train Epoch: {} [{}/{} ({:.f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
```
最后,我们测试模型的准确率:
```python
model.eval()
test_loss =
correct =
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.f}%)'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
```
这就是用 PyTorch 实现 MNIST 手写数字识别的代码和注释。
阅读全文