将植物点云骨架图中的节点分为叶尖、内部节点和交叉节点。接下来,找到最高的交叉节点,并将其标记为“植物轮廓”,提取出低于轮廓的点作为茎的一部分。然后,从数据中提取出茎的内点,并将骨架图中的一度节点重新连接。最后,将骨架图分割成多个部分,每个部分都以叶尖为起点,以交叉节点为终点。如果部分的一个端点是茎的一部分,则将其标记为叶子。这一步骤如何用c++写出来pcl1.8.1可以运行

时间: 2024-03-28 09:38:17 浏览: 22
这是一个比较复杂的处理过程,需要结合点云数据和骨架图数据进行处理。以下是大致的思路和代码实现的一些提示,具体实现细节可能需要根据具体数据结构进行调整。 首先,需要读取点云数据和骨架图数据,可以使用PCL库中的相关函数进行读取。例如,使用pcl::io::loadPCD()函数读取点云数据,使用pcl::io::loadPolygonFileSTL()函数读取骨架图数据。 然后,需要将骨架图中的节点分为叶尖、内部节点和交叉节点。可以使用PCL库中的pcl::GreedyProjectionTriangulation类进行点云分割,然后根据骨架图中节点的坐标和连接关系,将节点分类。 接下来,找到最高的交叉节点,并将其标记为“植物轮廓”。可以使用PCL库中的pcl::getMaxDistance()函数找到点云中离点最远的点,然后根据该点和骨架图中的节点坐标进行匹配,找到最高的交叉节点。 然后,需要提取出低于轮廓的点作为茎的一部分。可以使用PCL库中的pcl::PassThrough类进行点云滤波,将高于轮廓的点过滤掉。 接着,需要从数据中提取出茎的内点,并将骨架图中的一度节点重新连接。可以使用PCL库中的pcl::ExtractIndices类进行点云提取,然后根据提取出的茎的内点重新连接骨架图中的一度节点。 最后,将骨架图分割成多个部分,每个部分都以叶尖为起点,以交叉节点为终点。如果部分的一个端点是茎的一部分,则将其标记为叶子。可以使用PCL库中的pcl::EuclideanClusterExtraction类进行点云聚类,然后根据聚类结果和骨架图中的连接关系进行分割和标记。 参考代码如下: ``` #include <pcl/io/pcd_io.h> #include <pcl/io/vtk_lib_io.h> #include <pcl/point_types.h> #include <pcl/filters/passthrough.h> #include <pcl/segmentation/extract_clusters.h> int main(int argc, char** argv) { // 读取点云数据 pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadPCDFile<pcl::PointXYZ>("cloud.pcd", *cloud); // 读取骨架图数据 vtkSmartPointer<vtkPolyData> skeleton = vtkSmartPointer<vtkPolyData>::New(); pcl::io::loadPolygonFileSTL("skeleton.stl", skeleton); // 将骨架图中的节点分为叶尖、内部节点和交叉节点 // ... // 找到最高的交叉节点,并将其标记为“植物轮廓” // ... // 提取出低于轮廓的点作为茎的一部分 pcl::PassThrough<pcl::PointXYZ> pass; pass.setInputCloud(cloud); pass.setFilterFieldName("z"); pass.setFilterLimits(0, contour.z); pass.filter(*cloud); // 从数据中提取出茎的内点,并将骨架图中的一度节点重新连接 // ... // 将骨架图分割成多个部分,每个部分都以叶尖为起点,以交叉节点为终点 pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec; ec.setInputCloud(cloud); ec.setClusterTolerance(0.02); ec.setMinClusterSize(100); ec.setMaxClusterSize(25000); std::vector<pcl::PointIndices> cluster_indices; ec.extract(cluster_indices); // 遍历每个部分,如果一个端点是茎的一部分,则将其标记为叶子 // ... return 0; } ```

相关推荐

最新推荐

recommend-type

风力发电机组齿轮箱概述

风力发电机组中的齿轮箱是一个重要的机械部件,其主要功用是将风轮在风力作用下所产生的动力传递给发电机并使其得到相应的转速。通常风轮的转速很低,远达不到发电机发电所要求的转速,必须通过齿轮箱齿轮副的增速...
recommend-type

setuptools-33.1.1-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

超级简单的地图操作工具开发可疑应急,地图画点,画线,画区域,获取地图经纬度等

解压密码:10086007 参考:https://blog.csdn.net/qq_38567039/article/details/138872298?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22138872298%22%2C%22source%22%3A%22qq_38567039%22%7D 获取地图经纬度等 超级简单的地图操作工具开发可疑应急,echars的地图画点,画线,画区域 <script type="text/javascript" src="echarts.min.js"></script> <!-- Uncomment this line if you want to use map--> <script type="text/javascript" src="china.js"></script> <script type="text/javascript" src="world.js"></script>
recommend-type

java进销存管理系统(jsp+mssql).zip

java进销存管理系统(jsp+mssql)
recommend-type

launcher (1).apk

launcher (1).apk
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。